# This file is part of OpenCV project. # It is subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html. # The script generates synthetic data for multi-camera calibration assessment # Input: cameras configuration. See config_cv_test.yaml # Output: generated object points (3d), image points (2d) for calibration and # board poses ground truth (R, t) for check import argparse import numpy as np import math import yaml from drawer import animation2D, animation3D from utils import RandGen, insideImage, eul2rot, saveKDRT, areAllInsideImage, insideImageMask, projectCamera, export2JSON, writeMatrix from pathlib import Path from board import CheckerBoard import os import json class Camera: def __init__(self, idx, img_width, img_height, fx_limit, euler_limit, t_limit, is_fisheye, fy_deviation=None, skew=None, distortion_limit=None, noise_scale_img_diag=None): """ @skew : is either None or in radians @fy_deviation : is either None (that is fx=fy) or value such that fy = [fx*(1-fy_deviation/100), fx*(1+fy_deviation/100)] @distortion_limit : is either None or array of size (num_tangential_dist+num_radial_dist) x 2 @euler_limit : is 3 x 2 limit of euler angles in degrees @t_limit : is 3 x 2 limit of translation in meters """ assert len(fx_limit) == 2 and img_width >= 0 and img_width >= 0 if is_fisheye and distortion_limit is not None: assert len(distortion_limit) == 4 # distortion for fisheye has only 4 parameters self.idx = idx self.img_width, self.img_height = img_width, img_height self.fx_min = fx_limit[0] self.fx_max = fx_limit[1] self.fy_deviation = fy_deviation self.img_diag = math.sqrt(img_height ** 2 + img_width ** 2) self.is_fisheye = is_fisheye self.fx, self.fy = None, None self.px, self.py = None, None self.K, self.R, self.t, self.P = None, None, None, None self.skew = skew self.distortion = None self.distortion_lim = distortion_limit self.euler_limit = np.array(euler_limit, dtype=np.float32) self.t_limit = t_limit self.noise_scale_img_diag = noise_scale_img_diag if idx != 0: assert len(euler_limit) == len(t_limit) == 3 for i in range(3): assert len(euler_limit[i]) == len(t_limit[i]) == 2 self.euler_limit[i] *= (np.pi / 180) def generateAll(cameras, board, num_frames, rand_gen, MAX_RAND_ITERS=10000, save_proj_animation=None, save_3d_animation=None): EPS = 1e-10 """ output: points_2d: NUM_FRAMES x NUM_CAMERAS x 2 x NUM_PTS """ for i in range(len(cameras)): cameras[i].t = np.zeros((3, 1)) if cameras[i].idx == 0: cameras[i].R = np.identity(3) else: angles = [0, 0, 0] for k in range(3): if abs(cameras[i].t_limit[k][0] - cameras[i].t_limit[k][1]) < EPS: cameras[i].t[k] = cameras[i].t_limit[k][0] else: cameras[i].t[k] = rand_gen.randRange(cameras[i].t_limit[k][0], cameras[i].t_limit[k][1]) if abs(cameras[i].euler_limit[k][0] - cameras[i].euler_limit[k][1]) < EPS: angles[k] = cameras[i].euler_limit[k][0] else: angles[k] = rand_gen.randRange(cameras[i].euler_limit[k][0], cameras[i].euler_limit[k][1]) cameras[i].R = eul2rot(angles) if abs(cameras[i].fx_min - cameras[i].fx_max) < EPS: cameras[i].fx = cameras[i].fx_min else: cameras[i].fx = rand_gen.randRange(cameras[i].fx_min, cameras[i].fx_max) if cameras[i].fy_deviation is None: cameras[i].fy = cameras[i].fx else: cameras[i].fy = rand_gen.randRange((1 - cameras[i].fy_deviation) * cameras[i].fx, (1 + cameras[i].fy_deviation) * cameras[i].fx) cameras[i].px = int(cameras[i].img_width / 2.0) + 1 cameras[i].py = int(cameras[i].img_height / 2.0) + 1 cameras[i].K = np.array([[cameras[i].fx, 0, cameras[i].px], [0, cameras[i].fy, cameras[i].py], [0, 0, 1]], dtype=float) if cameras[i].skew is not None: cameras[i].K[0, 1] = np.tan(cameras[i].skew) * cameras[i].K[0, 0] cameras[i].P = cameras[i].K @ np.concatenate((cameras[i].R, cameras[i].t), 1) if cameras[i].distortion_lim is not None: cameras[i].distortion = np.zeros((1, len(cameras[i].distortion_lim))) # opencv using 5 values distortion as default for k, lim in enumerate(cameras[i].distortion_lim): cameras[i].distortion[0,k] = rand_gen.randRange(lim[0], lim[1]) else: cameras[i].distortion = np.zeros((1, 5)) # opencv is using 5 values distortion as default origin = None box = np.array([[0, board.square_len * (board.w - 1), 0, board.square_len * (board.w - 1)], [0, 0, board.square_len * (board.h - 1), board.square_len * (board.h - 1)], [0, 0, 0, 0]]) if board.t_origin is None: try: import torch, pytorch3d, pytorch3d.transforms has_pytorch = True except: has_pytorch = False if has_pytorch: rot_angles = torch.zeros(3, requires_grad=True) origin = torch.ones((3,1), requires_grad=True) optimizer = torch.optim.Adam([rot_angles, origin], lr=5e-3) Ps = torch.tensor(np.stack([cam.K @ np.concatenate((cam.R, cam.t), 1) for cam in cameras]), dtype=torch.float32) rot_conv = 'XYZ' board_pattern = torch.tensor(box, dtype=Ps.dtype) corners = torch.tensor([[[0, 0], [0, cam.img_height], [cam.img_width, 0], [cam.img_width, cam.img_height]] for cam in cameras], dtype=Ps.dtype).transpose(-1,-2) loss_fnc = torch.nn.HuberLoss() lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', min_lr=1e-4, factor=0.8, patience=10) prev_loss = 1e10 torch.autograd.set_detect_anomaly(True) MAX_DEPTH = 4 for it in range(500): pts_board = pytorch3d.transforms.euler_angles_to_matrix(rot_angles, rot_conv) @ board_pattern + origin pts_proj = Ps[:,:3,:3] @ pts_board[None,:] + Ps[:,:,[-1]] pts_proj = pts_proj[:, :2] / (pts_proj[:, [2]]+1e-15) loss = num_wrong = 0 for i, proj in enumerate(pts_proj): if not areAllInsideImage(pts_proj[i], cameras[i].img_width, cameras[i].img_height): loss += loss_fnc(corners[i], pts_proj[i]) num_wrong += 1 if num_wrong > 0: loss /= num_wrong loss.backward() optimizer.step() lr_scheduler.step(loss) if origin[2] < 0: with torch.no_grad(): origin[2] = 2.0 if it % 5 == 0: print('iter', it, 'loss %.2E' % loss) if abs(prev_loss - loss) < 1e-10: break prev_loss = loss.item() else: print('all points inside') break print(origin) points_board = (torch.tensor(board.pattern, dtype=Ps.dtype) + origin).detach().numpy() else: max_sum_diag = 0.0 total_tested = 0 for z in np.arange(0.25, 50, .5): if origin is not None: break # will not update min_x1, max_x1 = -z * cameras[0].px / cameras[0].fx, (cameras[0].img_width * z - z * cameras[0].px) / cameras[0].fx min_y1, max_y1 = -z * cameras[0].py / cameras[0].fy, (cameras[0].img_height * z - z * cameras[0].py) / cameras[0].fy min_x2, max_x2 = -z * cameras[0].px / cameras[0].fx - box[0, 1], (cameras[0].img_width * z - z * cameras[0].px) / cameras[0].fx - box[0, 1] min_y2, max_y2 = -z * cameras[0].py / cameras[0].fy - box[1, 2], (cameras[0].img_height * z - z * cameras[0].py) / cameras[0].fy - box[1, 2] min_x = max(min_x1, min_x2) min_y = max(min_y1, min_y2) max_x = min(max_x1, max_x2) max_y = min(max_y1, max_y2) if max_x < min_x or max_y < min_y: continue for x in np.linspace(min_x, max_x, 40): for y in np.linspace(min_y, max_y, 40): total_tested += 1 pts = box + np.array([[x], [y], [z]]) sum_diag = 0.0 all_visible = True for i in range(len(cameras)): pts_proj = projectCamera(cameras[i], pts) visible_pts = insideImage(pts_proj, cameras[i].img_width, cameras[i].img_height) if visible_pts != pts_proj.shape[1]: # print(i,')',x, y, z, 'not visible, total', visible_pts, '/', pts_proj.shape[1]) all_visible = False break sum_diag += np.linalg.norm(pts_proj[:, 0] - pts_proj[:, -1]) if not all_visible: continue if max_sum_diag < sum_diag: max_sum_diag = sum_diag origin = np.array([[x], [y], [z]]) points_board = board.pattern + origin else: points_board = board.pattern + board.t_origin points_2d, points_3d = [], [] valid_frames_per_camera = np.zeros(len(cameras)) MIN_FRAMES_PER_CAM = int(num_frames * 0.1) R_used = [] t_used = [] for frame in range(MAX_RAND_ITERS): R_board = eul2rot([ rand_gen.randRange(board.euler_limit[0][0], board.euler_limit[0][1]), rand_gen.randRange(board.euler_limit[1][0], board.euler_limit[1][1]), rand_gen.randRange(board.euler_limit[2][0], board.euler_limit[2][1])]) t_board = np.array([[rand_gen.randRange(board.t_limit[0][0], board.t_limit[0][1])], [rand_gen.randRange(board.t_limit[1][0], board.t_limit[1][1])], [rand_gen.randRange(board.t_limit[2][0], board.t_limit[2][1])]]) points_board_mean = points_board.mean(-1)[:,None] pts_board = R_board @ (points_board - points_board_mean) + points_board_mean + t_board cam_points_2d = [projectCamera(cam, pts_board) for cam in cameras] """ # plot normals board_normal = 10*np.cross(pts_board[:,board.w] - pts_board[:,0], pts_board[:,board.w-1] - pts_board[:,0]) ax = plotCamerasAndBoardFig(pts_board, cameras, pts_color=board.colors_board) pts = np.stack((pts_board[:,0], pts_board[:,0]+board_normal)) ax.plot(pts[:,0], pts[:,1], pts[:,2], 'r-') for ii, cam in enumerate(cameras): pts = np.stack((cam.t.flatten(), cam.t.flatten()+cam.R[2])) ax.plot(pts[:,0], pts[:,1], pts[:,2], 'g-') print(ii, np.arccos(board_normal.dot(cam.R[2]) / np.linalg.norm(board_normal))*180/np.pi, np.arccos((-board_normal).dot(cam.R[2]) / np.linalg.norm(board_normal))*180/np.pi) plotAllProjectionsFig(np.stack(cam_points_2d), cameras, pts_color=board.colors_board) plt.show() """ for cam_idx in range(len(cameras)): # Check whether the board is in front of the the image pt_3d = cameras[cam_idx].R @ pts_board + cameras[cam_idx].t if not board.isProjectionValid(cam_points_2d[cam_idx]) or np.min(pt_3d[2]) < 1e-3: cam_points_2d[cam_idx] = -np.ones_like(cam_points_2d[cam_idx]) elif cameras[cam_idx].noise_scale_img_diag is not None: cam_points_2d[cam_idx] += np.random.normal(0, cameras[cam_idx].img_diag * cameras[cam_idx].noise_scale_img_diag, cam_points_2d[cam_idx].shape) ### test pts_inside_camera = np.zeros(len(cameras), dtype=bool) for ii, pts_2d in enumerate(cam_points_2d): mask = insideImageMask(pts_2d, cameras[ii].img_width, cameras[ii].img_height) # cam_points_2d[ii] = cam_points_2d[ii][:,mask] pts_inside_camera[ii] = mask.all() # print(pts_inside, end=' ') # print('from max inside', pts_board.shape[1]) ### if pts_inside_camera.sum() >= 2: valid_frames_per_camera += np.array(pts_inside_camera, int) print(valid_frames_per_camera) points_2d.append(np.stack(cam_points_2d)) points_3d.append(pts_board) R_used.append(R_board) t_used.append(R_board @ (board.t_origin - points_board_mean) + points_board_mean + t_board) if len(points_2d) >= num_frames and (valid_frames_per_camera >= MIN_FRAMES_PER_CAM).all(): print('tried samples', frame) break VIDEOS_FPS = 5 VIDEOS_DPI = 250 MAX_FRAMES = 100 if save_proj_animation is not None: animation2D(board, cameras, points_2d, save_proj_animation, VIDEOS_FPS, VIDEOS_DPI, MAX_FRAMES) if save_3d_animation is not None: animation3D(board, cameras, points_3d, save_3d_animation, VIDEOS_FPS, VIDEOS_DPI, MAX_FRAMES) print('number of found frames', len(points_2d)) return np.stack(points_2d), np.stack(points_3d), np.stack(R_used), np.stack(t_used) def createConfigFile(fname, params): file = open(fname, 'w') def writeDict(dict_write, tab): for key, value in dict_write.items(): if isinstance(value, dict): file.write(tab+key+' :\n') writeDict(value, tab+' ') else: file.write(tab+key+' : '+str(value)+'\n') file.write('\n') writeDict(params, '') file.close() def generateRoomConfiguration(): params = {'NAME' : '"room_corners"', 'NUM_SAMPLES': 1, 'SEED': 0, 'MAX_FRAMES' : 50, 'MAX_RANDOM_ITERS' : 100000, 'NUM_CAMERAS': 4, 'BOARD': {'WIDTH':9, 'HEIGHT':7, 'SQUARE_LEN':0.08, 'T_LIMIT': [[-0.2,0.2], [-0.2,0.2], [-0.1,0.1]], 'EULER_LIMIT': [[-45, 45], [-180, 180], [-45, 45]], 'T_ORIGIN': [-0.3,0,1.5]}} params['CAMERA1'] = {'FX': [1200, 1200], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1500, 'IMG_HEIGHT': 1080, 'EULER_LIMIT': 'null', 'T_LIMIT': 'null', 'NOISE_SCALE': 3.0e-4, 'FISHEYE': False, 'DIST': [[5.2e-1,5.2e-1], [0,0], [0,0], [0,0], [0,0]]} params['CAMERA2'] = {'FX': [1000, 1000], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1300, 'IMG_HEIGHT': 1000, 'EULER_LIMIT': [[0,0], [90,90], [0,0]], 'T_LIMIT': [[-2.0,-2.0], [0.0, 0.0], [1.5, 1.5]], 'NOISE_SCALE': 3.5e-4, 'FISHEYE': False, 'DIST': [[3.2e-1,3.2e-1], [0,0], [0,0], [0,0], [0,0]]} params['CAMERA3'] = {'FX': [1000, 1000], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1300, 'IMG_HEIGHT': 1000, 'EULER_LIMIT': [[0,0], [-90,-90], [0,0]], 'T_LIMIT': [[2.0,2.0], [0.0, 0.0], [1.5, 1.5]], 'NOISE_SCALE': 4.0e-4, 'FISHEYE': False, 'DIST': [[6.2e-1,6.2e-1], [0,0], [0,0], [0,0], [0,0]]} params['CAMERA4'] = {'FX': [1000, 1000], 'FY_DEVIATION': 'null', 'IMG_WIDTH': 1300, 'IMG_HEIGHT': 1000, 'EULER_LIMIT': [[0,0], [180,180], [0,0]], 'T_LIMIT': [[0.0,0.0], [0.0, 0.0], [3.0, 3.0]], 'NOISE_SCALE': 3.2e-4, 'FISHEYE': False, 'DIST': [[4.2e-1,4.2e-1], [0,0], [0,0], [0,0], [0,0]]} createConfigFile('python/configs/config_room_corners.yaml', params) def generateCircularCameras(): rand_gen = RandGen(0) params = {'NAME' : '"circular"', 'NUM_SAMPLES': 1, 'SEED': 0, 'MAX_FRAMES' : 70, 'MAX_RANDOM_ITERS' : 100000, 'NUM_CAMERAS': 9, 'BOARD': {'WIDTH': 9, 'HEIGHT': 7, 'SQUARE_LEN':0.08, 'T_LIMIT': [[-0.2,0.2], [-0.2,0.2], [-0.1,0.1]], 'EULER_LIMIT': [[-45, 45], [-180, 180], [-45, 45]], 'T_ORIGIN': [-0.3,0,2.2]}} dist = 1.1 xs = np.arange(dist, dist*(params['NUM_CAMERAS']//4)+1e-3, dist) xs = np.concatenate((xs, xs[::-1])) xs = np.concatenate((xs, -xs)) dist_z = 0.90 zs = np.arange(dist_z, dist_z*(params['NUM_CAMERAS']//2)+1e-3, dist_z) zs = np.concatenate((zs, zs[::-1])) yaw = np.linspace(0, -360, params['NUM_CAMERAS']+1)[1:-1] for i in range(9): fx = rand_gen.randRange(900, 1300) d0 = rand_gen.randRange(4e-1, 7e-1) euler_limit = 'null' t_limit = 'null' if i > 0: euler_limit = [[0,0], [yaw[i-1], yaw[i-1]], [0,0]] t_limit = [[xs[i-1], xs[i-1]], [0,0], [zs[i-1], zs[i-1]]] params['CAMERA'+str((i+1))] = {'FX': [fx, fx], 'FY_DEVIATION': 'null', 'IMG_WIDTH': int(rand_gen.randRange(1200, 1600)), 'IMG_HEIGHT': int(rand_gen.randRange(800, 1200)), 'EULER_LIMIT': euler_limit, 'T_LIMIT': t_limit, 'NOISE_SCALE': rand_gen.randRange(2e-4, 5e-4), 'FISHEYE': False, 'DIST': [[d0,d0], [0,0], [0,0], [0,0], [0,0]]} createConfigFile('python/configs/config_circular.yaml', params) def getCamerasFromCfg(cfg): cameras = [] for i in range(cfg['NUM_CAMERAS']): cameras.append(Camera(i, cfg['CAMERA' + str(i+1)]['IMG_WIDTH'], cfg['CAMERA' + str(i+1)]['IMG_HEIGHT'], cfg['CAMERA' + str(i+1)]['FX'], cfg['CAMERA' + str(i+1)]['EULER_LIMIT'], cfg['CAMERA' + str(i+1)]['T_LIMIT'], cfg['CAMERA' + str(i+1)]['FISHEYE'], cfg['CAMERA' + str(i+1)]['FY_DEVIATION'], noise_scale_img_diag=cfg['CAMERA' + str(i+1)]['NOISE_SCALE'], distortion_limit=cfg['CAMERA' + str(i+1)]['DIST'])) return cameras def main(cfg_name, save_folder): cfg = yaml.safe_load(open(cfg_name, 'r')) print(cfg) np.random.seed(cfg['SEED']) for trial in range(cfg['NUM_SAMPLES']): Path(save_folder).mkdir(exist_ok=True, parents=True) checkerboard = CheckerBoard(cfg['BOARD']['WIDTH'], cfg['BOARD']['HEIGHT'], cfg['BOARD']['SQUARE_LEN'], cfg['BOARD']['EULER_LIMIT'], cfg['BOARD']['T_LIMIT'], cfg['BOARD']['T_ORIGIN']) cameras = getCamerasFromCfg(cfg) points_2d, points_3d, R_used, t_used = generateAll(cameras, checkerboard, cfg['MAX_FRAMES'], RandGen(cfg['SEED']), cfg['MAX_RANDOM_ITERS'], save_folder+'plots_projections.mp4', save_folder+'board_cameras.mp4') for i in range(len(cameras)): print('Camera', i) print('K', cameras[i].K) print('R', cameras[i].R) print('t', cameras[i].t.flatten()) print('distortion', cameras[i].distortion.flatten()) print('-----------------------------') imgs_width_height = [[cam.img_width, cam.img_height] for cam in cameras] is_fisheye = [cam.is_fisheye for cam in cameras] export2JSON(checkerboard.pattern, points_2d, imgs_width_height, is_fisheye, save_folder+'opencv_sample_'+cfg['NAME']+'.json') saveKDRT(cameras, save_folder+'gt.txt') file = open(save_folder + "gt.txt", "a") for i in range(R_used.shape[0]): writeMatrix(file, 'R_%d' % i, R_used[i]) writeMatrix(file, 'T_%d' % i, t_used[i]) poses = dict() for idx in range(len(R_used)): poses['frame_%d' % idx] = {'R': R_used[idx].tolist(), 'T': t_used[idx].tolist()} with open(os.path.join(save_folder, "gt_poses.json"), 'wt') as gt: gt.write(json.dumps(poses, indent=4)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, required=True, help='path to config file, e.g., config_cv_test.yaml') parser.add_argument('--output_folder', type=str, default='', help='output folder') params, _ = parser.parse_known_args() main(params.cfg, params.output_folder)