// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "../precomp.hpp" #include "layers_common.hpp" #include "../op_inf_engine.hpp" #include namespace cv { namespace dnn { class ResizeLayerImpl CV_FINAL : public ResizeLayer { public: ResizeLayerImpl(const LayerParams& params) { setParamsFrom(params); outWidth = params.get("width", 0); outHeight = params.get("height", 0); if (params.has("zoom_factor")) { CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y")); zoomFactorWidth = zoomFactorHeight = params.get("zoom_factor"); } else if (params.has("zoom_factor_x") || params.has("zoom_factor_y")) { CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y")); zoomFactorWidth = params.get("zoom_factor_x"); zoomFactorHeight = params.get("zoom_factor_y"); } interpolation = params.get("interpolation"); CV_Assert(interpolation == "nearest" || interpolation == "bilinear"); alignCorners = params.get("align_corners", false); if (alignCorners) CV_Error(Error::StsNotImplemented, "Resize with align_corners=true is not implemented"); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(inputs.size() == 1, inputs[0].size() == 4); outputs.resize(1, inputs[0]); outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight); outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth); // We can work in-place (do nothing) if input shape == output shape. return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]); } virtual bool supportBackend(int backendId) CV_OVERRIDE { return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && interpolation == "nearest"; } virtual void finalize(const std::vector& inputs, std::vector &outputs) CV_OVERRIDE { if (!outWidth && !outHeight) { outHeight = outputs[0].size[2]; outWidth = outputs[0].size[3]; } } void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3]) return; Mat& inp = *inputs[0]; Mat& out = outputs[0]; if (interpolation == "nearest") { for (size_t n = 0; n < inputs[0]->size[0]; ++n) { for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch) { resize(getPlane(inp, n, ch), getPlane(out, n, ch), Size(outWidth, outHeight), 0, 0, INTER_NEAREST); } } } else if (interpolation == "bilinear") { const int inpHeight = inp.size[2]; const int inpWidth = inp.size[3]; const int inpSpatialSize = inpHeight * inpWidth; const int outSpatialSize = outHeight * outWidth; const float heightScale = static_cast(inpHeight) / (outHeight); const float widthScale = static_cast(inpWidth) / (outWidth); const int numPlanes = inp.size[0] * inp.size[1]; CV_Assert(inp.isContinuous(), out.isContinuous()); Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight); Mat outPlanes = out.reshape(1, numPlanes * outHeight); for (int y = 0; y < outHeight; ++y) { float input_y = y * heightScale; int y0 = static_cast(input_y); const float* inpData_row0 = inpPlanes.ptr(y0); const float* inpData_row1 = inpPlanes.ptr(std::min(y0 + 1, inpHeight - 1)); for (int x = 0; x < outWidth; ++x) { float input_x = x * widthScale; int x0 = static_cast(input_x); int x1 = std::min(x0 + 1, inpWidth - 1); float* outData = outPlanes.ptr(y, x); const float* inpData_row0_c = inpData_row0; const float* inpData_row1_c = inpData_row1; for (int c = 0; c < numPlanes; ++c) { *outData = inpData_row0_c[x0] + (input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) + (input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] + (input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0])); inpData_row0_c += inpSpatialSize; inpData_row1_c += inpSpatialSize; outData += outSpatialSize; } } } } else CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation); } virtual Ptr initInfEngine(const std::vector >&) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE InferenceEngine::LayerParams lp; lp.name = name; lp.type = "Resample"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer(new InferenceEngine::CNNLayer(lp)); ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST"; ieLayer->params["antialias"] = "0"; ieLayer->params["width"] = cv::format("%d", outWidth); ieLayer->params["height"] = cv::format("%d", outHeight); return Ptr(new InfEngineBackendNode(ieLayer)); #endif // HAVE_INF_ENGINE return Ptr(); } private: int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight; String interpolation; bool alignCorners; }; Ptr ResizeLayer::create(const LayerParams& params) { return Ptr(new ResizeLayerImpl(params)); } } // namespace dnn } // namespace cv