/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* * This class implements an algorithm described in "Visual Tracking of Human Visitors under * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere, * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012. * * Prepared and integrated by Andrew B. Godbehere. */ #include "precomp.hpp" using namespace std; namespace cv { BackgroundSubtractorGMG::BackgroundSubtractorGMG() { /* * Default Parameter Values. Override with algorithm "set" method. */ maxFeatures = 64; learningRate = 0.025; numInitializationFrames = 120; quantizationLevels = 16; backgroundPrior = 0.8; decisionThreshold = 0.8; smoothingRadius = 7; } void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, flexitype max) { minVal = min; maxVal = max; if (minVal == maxVal) { CV_Error_(CV_StsBadArg,("minVal and maxVal cannot be the same.")); } /* * Parameter validation */ if (maxFeatures <= 0) { CV_Error_(CV_StsBadArg, ("maxFeatures parameter must be 1 or greater. Instead, it is %d.",maxFeatures)); } if (learningRate < 0.0 || learningRate > 1.0) { CV_Error_(CV_StsBadArg, ("learningRate parameter must be in the range [0.0,1.0]. Instead, it is %f.", learningRate)); } if (numInitializationFrames < 1) { CV_Error_(CV_StsBadArg, ("numInitializationFrames must be at least 1. Instead, it is %d.", numInitializationFrames)); } if (quantizationLevels < 1) { CV_Error_(CV_StsBadArg, ("quantizationLevels must be at least 1 (preferably more). Instead it is %d.", quantizationLevels)); } if (backgroundPrior < 0.0 || backgroundPrior > 1.0) { CV_Error_(CV_StsBadArg, ("backgroundPrior must be a probability, between 0.0 and 1.0. Instead it is %f.", backgroundPrior)); } /* * Detect and accommodate the image depth */ Mat image = _image.getMat(); imageDepth = image.depth(); // 32f, 8u, etc. numChannels = image.channels(); /* * Color quantization [0 | | | | max] --> [0 | | max] * (0) Use double as intermediary to convert all types to int. * (i) Shift min to 0, * (ii) max/(num intervals) = factor. x/factor * factor = quantized result, after integer operation. */ /* * Data Structure Initialization */ Size imsize = image.size(); imWidth = imsize.width; imHeight = imsize.height; numPixels = imWidth*imHeight; pixels.resize(numPixels); frameNum = 0; // used to iterate through matrix of type unknown at compile time elemSize = image.elemSize(); elemSize1 = image.elemSize1(); vector::iterator pixel; vector::iterator pixel_end = pixels.end(); for (pixel = pixels.begin(); pixel != pixel_end; ++pixel) { pixel->setMaxFeatures(maxFeatures); } fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow. isDataInitialized = true; } void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask, double newLearningRate) { if (!isDataInitialized) { CV_Error(CV_StsError,"BackgroundSubstractorGMG has not been initialized. Call initialize() first.\n"); } /* * Update learning rate parameter, if desired */ if (newLearningRate != -1.0) { if (newLearningRate < 0.0 || newLearningRate > 1.0) { CV_Error(CV_StsOutOfRange,"Learning rate for Operator () must be between 0.0 and 1.0.\n"); } this->learningRate = newLearningRate; } Mat image = _image.getMat(); _fgmask.create(Size(imHeight,imWidth),CV_8U); fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG /* * Iterate over pixels in image */ // grab data at each pixel (1,2,3 channels, int, float, etc.) // grab data as an array of bytes. Then, send that array to a function that reads data into vector of appropriate types... and quantizing... before saving as a feature, which is a vector of flexitypes, so code can be portable. // multiple channels do have sequential storage, use mat::elemSize() and mat::elemSize1() vector::iterator pixel; vector::iterator pixel_end = pixels.end(); size_t i; //#pragma omp parallel for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel) { HistogramFeatureGMG newFeature; newFeature.color.clear(); for (size_t c = 0; c < numChannels; ++c) { /* * Perform quantization. in each channel. (color-min)*(levels)/(max-min). * Shifts min to 0 and scales, finally casting to an int. */ size_t quantizedColor; // pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c if (imageDepth == CV_8U) { uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c); quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc)); } else if (imageDepth == CV_8S) { char *color = (char*)(image.data+elemSize*i+elemSize1*c); quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c)); } else if (imageDepth == CV_16U) { unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c); quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui)); } else if (imageDepth == CV_16S) { int *color = (int*)(image.data+elemSize*i+elemSize1*c); quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i)); } else if (imageDepth == CV_32F) { float *color = (float*)image.data+elemSize*i+elemSize1*c; quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui)); } else if (imageDepth == CV_32S) { long int *color = (long int*)(image.data+elemSize*i+elemSize1*c); quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li)); } else if (imageDepth == CV_64F) { double *color = (double*)image.data+elemSize*i+elemSize1*c; quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d)); } newFeature.color.push_back(quantizedColor); } // now that the feature is ready for use, put it in the histogram if (frameNum > numInitializationFrames) // typical operation { newFeature.likelihood = learningRate; /* * (1) Query histogram to find posterior probability of feature under model. */ float likelihood = (float)pixel->getLikelihood(newFeature); // see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule float posterior = (likelihood*backgroundPrior)/(likelihood*backgroundPrior+(1-likelihood)*(1-backgroundPrior)); /* * (2) feed posterior probability into the posterior image */ int row,col; col = i%imWidth; row = (i-col)/imWidth; posteriorImage.at(row,col) = (1.0-posterior); } pixel->setLastObservedFeature(newFeature); } /* * (3) Perform filtering and threshold operations to yield final mask image. * * 2 options. First is morphological open/close as before. Second is "median filtering" which Jon Barron says is good to remove noise */ Mat thresholdedPosterior; threshold(posteriorImage,thresholdedPosterior,decisionThreshold,1.0,THRESH_BINARY); thresholdedPosterior.convertTo(fgMaskImage,CV_8U,255); // convert image to integer space for further filtering and mask creation medianBlur(fgMaskImage,fgMaskImage,smoothingRadius); fgMaskImage.copyTo(_fgmask); ++frameNum; // keep track of how many frames we have processed } void BackgroundSubtractorGMG::getPosteriorImage(OutputArray _img) { _img.create(Size(imWidth,imHeight),CV_32F); Mat img = _img.getMat(); posteriorImage.copyTo(img); } void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask) { CV_Assert(_mask.size() == Size(imWidth,imHeight)); // mask should be same size as image Mat maskImg = _mask.getMat(); //#pragma omp parallel for (size_t i = 0; i < imHeight; ++i) { //#pragma omp parallel for (size_t j = 0; j < imWidth; ++j) { if (frameNum <= numInitializationFrames + 1) { // insert previously observed feature into the histogram. -1.0 parameter indicates training. pixels[i*imWidth+j].insertFeature(-1.0); if (frameNum >= numInitializationFrames+1) // training is done, normalize { pixels[i*imWidth+j].normalizeHistogram(); } } // if mask is 0, pixel is identified as a background pixel, so update histogram. else if (maskImg.at(i,j) == 0) { pixels[i*imWidth+j].insertFeature(learningRate); // updates the histogram for the next iteration. } } } } BackgroundSubtractorGMG::~BackgroundSubtractorGMG() { } BackgroundSubtractorGMG::PixelModelGMG::PixelModelGMG() { numFeatures = 0; maxFeatures = 0; } BackgroundSubtractorGMG::PixelModelGMG::~PixelModelGMG() { } void BackgroundSubtractorGMG::PixelModelGMG::setLastObservedFeature(HistogramFeatureGMG f) { this->lastObservedFeature = f; } double BackgroundSubtractorGMG::PixelModelGMG::getLikelihood(BackgroundSubtractorGMG::HistogramFeatureGMG f) { std::list::iterator feature = histogram.begin(); std::list::iterator feature_end = histogram.end(); for (feature = histogram.begin(); feature != feature_end; ++feature) { // comparing only feature color, not likelihood. See equality operator for HistogramFeatureGMG if (f == *feature) { return feature->likelihood; } } return 0.0; // not in histogram, so return 0. } void BackgroundSubtractorGMG::PixelModelGMG::insertFeature(double learningRate) { std::list::iterator feature; std::list::iterator swap_end; std::list::iterator last_feature = histogram.end(); /* * If feature is in histogram already, add the weights, and move feature to front. * If there are too many features, remove the end feature and push new feature to beginning */ if (learningRate == -1.0) // then, this is a training-mode update. { /* * (1) Check if feature already represented in histogram */ lastObservedFeature.likelihood = 1.0; for (feature = histogram.begin(); feature != last_feature; ++feature) { if (lastObservedFeature == *feature) // feature in histogram { feature->likelihood += lastObservedFeature.likelihood; // now, move feature to beginning of list and break the loop HistogramFeatureGMG tomove = *feature; histogram.erase(feature); histogram.push_front(tomove); return; } } if (numFeatures == maxFeatures) { histogram.pop_back(); // discard oldest feature histogram.push_front(lastObservedFeature); } else { histogram.push_front(lastObservedFeature); ++numFeatures; } } else { /* * (1) Scale entire histogram by scaling factor * (2) Scale input feature. * (3) Check if feature already represented. If so, simply add. * (4) If feature is not represented, remove old feature, distribute weight evenly among existing features, add in new feature. */ *this *= (1.0-learningRate); lastObservedFeature.likelihood = learningRate; for (feature = histogram.begin(); feature != last_feature; ++feature) { if (lastObservedFeature == *feature) // feature in histogram { lastObservedFeature.likelihood += feature->likelihood; histogram.erase(feature); histogram.push_front(lastObservedFeature); return; // done with the update. } } if (numFeatures == maxFeatures) { histogram.pop_back(); // discard oldest feature histogram.push_front(lastObservedFeature); normalizeHistogram(); } else { histogram.push_front(lastObservedFeature); ++numFeatures; } } } BackgroundSubtractorGMG::PixelModelGMG& BackgroundSubtractorGMG::PixelModelGMG::operator *=(const float &rhs) { /* * Used to scale histogram by a constant factor */ list::iterator feature; list::iterator last_feature = histogram.end(); for (feature = histogram.begin(); feature != last_feature; ++feature) { feature->likelihood *= rhs; } return *this; } void BackgroundSubtractorGMG::PixelModelGMG::normalizeHistogram() { /* * First, calculate the total weight in the histogram */ list::iterator feature; list::iterator last_feature = histogram.end(); double total = 0.0; for (feature = histogram.begin(); feature != last_feature; ++feature) { total += feature->likelihood; } /* * Then, if weight is not 0, divide every feature by the total likelihood to re-normalize. */ for (feature = histogram.begin(); feature != last_feature; ++feature) { if (total != 0.0) feature->likelihood /= total; } } bool BackgroundSubtractorGMG::HistogramFeatureGMG::operator ==(HistogramFeatureGMG &rhs) { CV_Assert(color.size() == rhs.color.size()); std::vector::iterator color_a; std::vector::iterator color_b; std::vector::iterator color_a_end = this->color.end(); std::vector::iterator color_b_end = rhs.color.end(); for (color_a = color.begin(),color_b =rhs.color.begin();color_a!=color_a_end;++color_a,++color_b) { if (*color_a != *color_b) { return false; } } return true; } }