/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include namespace cv { namespace dnn { static void computeShapeByReshapeMask(const MatShape &srcShape, const MatShape &maskShape, Range srcRange /*= Range::all()*/, MatShape& dstShape) { int srcShapeSize = (int)srcShape.size(); int maskShapeSize = (int)maskShape.size(); if (srcRange == Range::all()) srcRange = Range(0, srcShapeSize); else { int sz = srcRange.size(); srcRange.start = clamp(srcRange.start, srcShapeSize); srcRange.end = srcRange.end == INT_MAX ? srcShapeSize : srcRange.start + sz; } bool explicitMask = !maskShape.empty(); // All mask values are positive. for (int i = 0, n = maskShape.size(); i < n && explicitMask; ++i) { explicitMask = maskShape[i] > 0; } // Working range of source shape is a range where area(src) == area(mask). if (explicitMask) { int maskTotal = total(maskShape); for (int i = srcRange.start + 1; i < srcRange.end; ++i) { if (total(srcShape, i, srcRange.end) != maskTotal) { srcRange.start = i - 1; break; } } CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal); } CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShapeSize); int dstShapeSize = srcShapeSize - srcRange.size() + maskShapeSize; dstShape.resize(dstShapeSize); std::copy(srcShape.begin(), srcShape.begin() + srcRange.start, dstShape.begin()); std::copy(srcShape.begin() + srcRange.end, srcShape.begin() + srcShapeSize, dstShape.begin() + srcRange.start + maskShapeSize); int inferDim = -1; for (int i = 0; i < maskShapeSize; i++) { if (maskShape[i] > 0) { dstShape[srcRange.start + i] = maskShape[i]; } else if (maskShape[i] == 0) { if (srcRange.start + i >= srcShapeSize) CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i)); dstShape[srcRange.start + i] = srcShape[srcRange.start + i]; } else if (maskShape[i] == -1) { if (inferDim != -1) CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)"); inferDim = srcRange.start + i; dstShape[inferDim] = 1; } else CV_Error(Error::StsBadArg, "maskShape[i] >= -1"); } size_t srcTotal = total(srcShape); size_t dstTotal = total(dstShape); if (inferDim != -1) { if (srcTotal % dstTotal != 0) CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1"); dstShape[inferDim] = (int)(srcTotal / dstTotal); } else { CV_Assert(srcTotal == dstTotal); } } class ReshapeLayerImpl : public ReshapeLayer { public: ReshapeLayerImpl(const LayerParams& params): performReordering(false) { setParamsFrom(params); int axis = params.get("axis", 0); int numAxes = params.get("num_axes", -1); enableReordering = params.get("reorder_dims", false); CV_Assert(numAxes >= -1); newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes); newShapeDesc.clear(); if (params.has("dim")) { const DictValue ¶mShape = params.get("dim"); int i, dims = paramShape.size(); newShapeDesc.resize(dims); for (i = 0; i < dims; i++) newShapeDesc[i] = paramShape.get(i); } } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { outputs.clear(); for (size_t i = 0; i < inputs.size(); i++) { outputs.push_back(MatShape()); computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back()); } internals = outputs; return true; } void finalize(const std::vector &inputs, std::vector &outputs) { CV_Assert(inputs.size()); CV_Assert(outputs.size()); Mat srcBlob = *inputs[0]; int dims = srcBlob.dims; MatShape inputShape = shape(srcBlob), outShape = shape(outputs[0]); // input.total() == output.total(). So if reordering is require, // one of the sizes will be are not equal. // Example where reordering is require: from 1x128x4x4 to 1x2048 // Example where reordering is NOT require: from 1x1024x1x1 to 1x1024. bool reorderingRequire = false; const int minDims = min(dims, (int)outShape.size()); for (int i = 0; !reorderingRequire && i < minDims; ++i) reorderingRequire = inputShape[i] != outShape[i]; performReordering = enableReordering && reorderingRequire; } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { for (size_t i = 0; i < inputs.size(); i++) { Mat srcBlob = *inputs[i]; MatShape inputShape = shape(srcBlob), outShape = shape(outputs[i]); if (performReordering) { float *dstData = internals[i].ptr(); const float *srcData = srcBlob.ptr(); int num = inputShape[0], channels = inputShape[1], height = inputShape[2], width = inputShape[3]; int total = num*channels*height*width; for(int i_n = 0; i_n < num; i_n++) { for(int i_c = 0; i_c < channels; i_c++) { for(int i_h = 0; i_h < height; i_h++) { for(int i_w = 0; i_w < width; i_w++) { int src_i = channels*height*width*i_n + height*width*i_c + width*i_h + i_w; int dst_i = channels*height*width*i_n + i_c + channels*width*i_h + channels*i_w; CV_Assert(dst_i < total); CV_Assert(src_i < total); dstData[dst_i] = srcData[src_i]; } } } } internals[i].copyTo(outputs[i]); } else { if (outputs[i].data != srcBlob.data) srcBlob.reshape(1, outShape).copyTo(outputs[i]); } } } private: std::vector > outShapes; bool enableReordering, performReordering; }; Ptr ReshapeLayer::create(const LayerParams& params) { return Ptr(new ReshapeLayerImpl(params)); } } }