/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "distortion_model.hpp" #include #include #include /* This is straight-forward port v3 of Matlab calibration engine by Jean-Yves Bouguet that is (in a large extent) based on the paper: Z. Zhang. "A flexible new technique for camera calibration". IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000. The 1st initial port was done by Valery Mosyagin. */ namespace cv { static void initIntrinsicParams2D( const Mat& objectPoints, const Mat& imagePoints, const Mat& npoints, Size imageSize, OutputArray cameraMatrix, double aspectRatio ) { CV_Assert(npoints.type() == CV_32SC1 && (npoints.rows == 1 || npoints.cols == 1) && npoints.isContinuous()); int nimages = npoints.rows + npoints.cols - 1; CV_Assert( objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3 ); CV_Assert( imagePoints.type() == CV_32FC2 || imagePoints.type() == CV_64FC2 ); if( objectPoints.rows != 1 || imagePoints.rows != 1 ) CV_Error( CV_StsBadSize, "object points and image points must be a single-row matrices" ); Mat_ matA(2*nimages, 2); Mat_ matb(2*nimages, 1, CV_64F ); double fx, fy, cx, cy; cx = (!imageSize.width ) ? 0.5 : (imageSize.width - 1)*0.5; cy = (!imageSize.height) ? 0.5 : (imageSize.height - 1)*0.5; // extract vanishing points in order to obtain initial value for the focal length int pos = 0; for(int i = 0; i < nimages; i++ ) { int ni = npoints.at(i); Mat matM = objectPoints.colRange(pos, pos + ni); Mat _m = imagePoints.colRange(pos, pos + ni); pos += ni; Matx33d H; Mat matH0 = findHomography(matM, _m); CV_Assert(matH0.size() == Size(3, 3)); matH0.convertTo(H, CV_64F); H(0, 0) -= H(2, 0)*cx; H(0, 1) -= H(2, 1)*cx; H(0, 2) -= H(2, 2)*cx; H(1, 0) -= H(2, 0)*cy; H(1, 1) -= H(2, 1)*cy; H(1, 2) -= H(2, 2)*cy; Vec3d h, v, d1, d2; Vec4d n; for(int j = 0; j < 3; j++ ) { double t0 = H(j, 0), t1 = H(j, 1); h[j] = t0; v[j] = t1; d1[j] = (t0 + t1)*0.5; d2[j] = (t0 - t1)*0.5; n[0] += t0*t0; n[1] += t1*t1; n[2] += d1[j]*d1[j]; n[3] += d2[j]*d2[j]; } for(int j = 0; j < 4; j++ ) n[j] = 1./std::sqrt(n[j]); for(int j = 0; j < 3; j++ ) { h[j] *= n[0]; v[j] *= n[1]; d1[j] *= n[2]; d2[j] *= n[3]; } matA(i*2+0, 0) = h[0]*v[0]; matA(i*2+0, 1) = h[1]*v[1]; matA(i*2+1, 0) = d1[0]*d2[0]; matA(i*2+1, 1) = d1[1]*d2[1]; matb(i*2+0) = -h[2]*v[2]; matb(i*2+1) = -d1[2]*d2[2]; } Vec2d f; solve(matA, matb, f, DECOMP_NORMAL + DECOMP_SVD); fx = std::sqrt(fabs(1./f[0])); fy = std::sqrt(fabs(1./f[1])); if( aspectRatio != 0 ) { double tf = (fx + fy)/(aspectRatio + 1.); fx = aspectRatio*tf; fy = tf; } Matx33d(fx, 0, cx, 0, fy, cy, 0, 0, 1).copyTo(cameraMatrix); } static void subMatrix(const Mat& src, Mat& dst, const std::vector& cols, const std::vector& rows) { CV_Assert(src.type() == CV_64F && dst.type() == CV_64F); int m = (int)rows.size(), n = (int)cols.size(); int i1 = 0, j1 = 0; const uchar* colsdata = cols.empty() ? 0 : &cols[0]; for(int i = 0; i < m; i++) { if(rows[i]) { const double* srcptr = src.ptr(i); double* dstptr = dst.ptr(i1++); for(int j = j1 = 0; j < n; j++) { if(colsdata[j]) dstptr[j1++] = srcptr[j]; } } } } static double calibrateCameraInternal( const Mat& objectPoints, const Mat& imagePoints, const Mat& npoints, Size imageSize, int iFixedPoint, Mat& cameraMatrix, Mat& distCoeffs, Mat rvecs, Mat tvecs, Mat newObjPoints, Mat stdDevs, Mat perViewErr, int flags, const TermCriteria& termCrit ) { int NINTRINSIC = CALIB_NINTRINSIC; double aspectRatio = 0.; int nimages = npoints.checkVector(1, CV_32S); CV_Assert(nimages >= 1); int ndistCoeffs = (int)distCoeffs.total(); bool releaseObject = iFixedPoint > 0 && iFixedPoint < npoints.at(0) - 1; // 0. check the parameters & allocate buffers if( imageSize.width <= 0 || imageSize.height <= 0 ) CV_Error( CV_StsOutOfRange, "image width and height must be positive" ); if(flags & CALIB_TILTED_MODEL) { //when the tilted sensor model is used the distortion coefficients matrix must have 14 parameters if (ndistCoeffs != 14) CV_Error( CV_StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" ); } else { //when the thin prism model is used the distortion coefficients matrix must have 12 parameters if(flags & CALIB_THIN_PRISM_MODEL) if (ndistCoeffs != 12) CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" ); } if( !rvecs.empty() ) { int cn = rvecs.channels(); CV_Assert(rvecs.depth() == CV_32F || rvecs.depth() == CV_64F); CV_Assert(rvecs.rows == nimages); CV_Assert((rvecs.rows == nimages && (rvecs.cols*cn == 3 || rvecs.cols*cn == 3)) || (rvecs.rows == 1 && rvecs.cols == nimages && cn == 3)); } if( !tvecs.empty() ) { int cn = tvecs.channels(); CV_Assert(tvecs.depth() == CV_32F || tvecs.depth() == CV_64F); CV_Assert(tvecs.rows == nimages); CV_Assert((tvecs.rows == nimages && tvecs.cols*cn == 3) || (tvecs.rows == 1 && tvecs.cols == nimages && cn == 3)); } CV_Assert(cameraMatrix.type() == CV_32F || cameraMatrix.type() == CV_64F); CV_Assert(cameraMatrix.rows == 3 && cameraMatrix.cols == 3); CV_Assert(distCoeffs.type() == CV_32F || distCoeffs.type() == CV_64F); CV_Assert(distCoeffs.rows == 1 || distCoeffs.cols == 1); CV_Assert(ndistCoeffs == 4 || ndistCoeffs == 5 || ndistCoeffs == 8 || ndistCoeffs == 12 || ndistCoeffs == 14); int total = 0, maxPoints = 0; for(int i = 0; i < nimages; i++ ) { int ni = npoints.at(i); if( ni < 4 ) { CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i)); } maxPoints = MAX( maxPoints, ni ); total += ni; } if( !newObjPoints.empty() ) { int cn = newObjPoints.channels(); CV_Assert(newObjPoints.depth() == CV_32F || newObjPoints.depth() == CV_64F); CV_Assert(rvecs.rows == nimages); CV_Assert((newObjPoints.rows == maxPoints && newObjPoints.cols*cn == 3) || (newObjPoints.rows == 1 && newObjPoints.cols == maxPoints && cn == 3)); } if( !stdDevs.empty() ) { int cn = stdDevs.channels(); CV_Assert(stdDevs.depth() == CV_32F || stdDevs.depth() == CV_64F); int nstddev = nimages*6 + NINTRINSIC + (releaseObject ? maxPoints*3 : 0); CV_Assert((stdDevs.rows == nstddev && stdDevs.cols*cn == 1) || (stdDevs.rows == 1 && stdDevs.cols == nstddev && cn == 1)); } Mat matM( 1, total, CV_64FC3 ); Mat _m( 1, total, CV_64FC2 ); Mat allErrors(1, total, CV_64FC2); if(objectPoints.channels() == 3) objectPoints.convertTo(matM, CV_64F); else convertPointsToHomogeneous(objectPoints, matM, CV_64F); if(imagePoints.channels() == 2) imagePoints.convertTo(_m, CV_64F); else convertPointsFromHomogeneous(imagePoints, _m, CV_64F); int nparams = NINTRINSIC + nimages*6; if( releaseObject ) nparams += maxPoints * 3; std::vector k(14, 0.0); Mat _k( distCoeffs.rows, distCoeffs.cols, CV_64F, k.data()); if( distCoeffs.total() < 8 ) { if( distCoeffs.total() < 5 ) flags |= CALIB_FIX_K3; flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6; } const double minValidAspectRatio = 0.01; const double maxValidAspectRatio = 100.0; Matx33d A; cameraMatrix.convertTo(A, CV_64F); // 1. initialize intrinsic parameters & LM solver if( flags & CALIB_USE_INTRINSIC_GUESS ) { if( A(0, 0) <= 0 || A(1, 1) <= 0 ) CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" ); if( A(0, 2) < 0 || A(0, 2) >= imageSize.width || A(1, 2) < 0 || A(1, 2) >= imageSize.height ) CV_Error( CV_StsOutOfRange, "Principal point must be within the image" ); if( fabs(A(0, 1)) > 1e-5 ) CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" ); if( fabs(A(1, 0)) > 1e-5 || fabs(A(2, 0)) > 1e-5 || fabs(A(2, 1)) > 1e-5 || fabs(A(2,2)-1) > 1e-5 ) CV_Error( CV_StsOutOfRange, "The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" ); A(0, 1) = A(1, 0) = A(2, 0) = A(2, 1) = 0.; A(2, 2) = 1.; if( flags & CALIB_FIX_ASPECT_RATIO ) { aspectRatio = A(0, 0)/A(1, 1); if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio ) CV_Error( CV_StsOutOfRange, "The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" ); } distCoeffs.convertTo(_k, CV_64F); } else { Scalar mean, sdv; meanStdDev(matM, mean, sdv); if( fabs(mean[2]) > 1e-5 || fabs(sdv[2]) > 1e-5 ) CV_Error( CV_StsBadArg, "For non-planar calibration rigs the initial intrinsic matrix must be specified" ); for(int i = 0; i < total; i++ ) matM.at(i).z = 0.; if( flags & CALIB_FIX_ASPECT_RATIO ) { aspectRatio = A(0, 0); aspectRatio /= A(1, 1); if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio ) CV_Error( CV_StsOutOfRange, "The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" ); } initIntrinsicParams2D( matM, _m, npoints, imageSize, A, aspectRatio ); } //std::cout << "A0: " << A << std::endl; //std::cout << "dist0:" << _k << std::endl; std::vector param(nparams, 0.0); Mat paramM(param, false); std::vector mask(nparams, (uchar)1); int solveMethod = DECOMP_EIG; if(flags & CALIB_USE_LU) { solveMethod = DECOMP_LU; } else if(flags & CALIB_USE_QR) { solveMethod = DECOMP_QR; } param[0] = A(0, 0); param[1] = A(1, 1); param[2] = A(0, 2); param[3] = A(1, 2); std::copy(k.begin(), k.end(), param.begin() + 4); if(flags & CALIB_FIX_ASPECT_RATIO) mask[0] = 0; if( flags & CALIB_FIX_FOCAL_LENGTH ) mask[0] = mask[1] = 0; if( flags & CALIB_FIX_PRINCIPAL_POINT ) mask[2] = mask[3] = 0; if( flags & CALIB_ZERO_TANGENT_DIST ) { param[6] = param[7] = 0; mask[6] = mask[7] = 0; } if( !(flags & CALIB_RATIONAL_MODEL) ) flags |= CALIB_FIX_K4 + CALIB_FIX_K5 + CALIB_FIX_K6; if( !(flags & CALIB_THIN_PRISM_MODEL)) flags |= CALIB_FIX_S1_S2_S3_S4; if( !(flags & CALIB_TILTED_MODEL)) flags |= CALIB_FIX_TAUX_TAUY; mask[ 4] = !(flags & CALIB_FIX_K1); mask[ 5] = !(flags & CALIB_FIX_K2); if( flags & CALIB_FIX_TANGENT_DIST ) mask[6] = mask[7] = 0; mask[ 8] = !(flags & CALIB_FIX_K3); mask[ 9] = !(flags & CALIB_FIX_K4); mask[10] = !(flags & CALIB_FIX_K5); mask[11] = !(flags & CALIB_FIX_K6); if(flags & CALIB_FIX_S1_S2_S3_S4) { mask[12] = 0; mask[13] = 0; mask[14] = 0; mask[15] = 0; } if(flags & CALIB_FIX_TAUX_TAUY) mask[16] = mask[17] = 0; if(releaseObject) { // copy object points int s = NINTRINSIC + nimages * 6; std::copy( matM.ptr(), matM.ptr( 0, maxPoints - 1 ) + 3, param.begin() + NINTRINSIC + nimages * 6 ); // fix points mask[s + 0] = 0; mask[s + 1] = 0; mask[s + 2] = 0; mask[s + iFixedPoint * 3 + 0] = 0; mask[s + iFixedPoint * 3 + 1] = 0; mask[s + iFixedPoint * 3 + 2] = 0; mask[nparams - 1] = 0; } // 2. initialize extrinsic parameters for(int i = 0, pos = 0; i < nimages; i++ ) { int ni = npoints.at(i); int s = NINTRINSIC + i*6; Mat _ri = paramM.rowRange(s, s + 3); Mat _ti = paramM.rowRange(s + 3, s + 6); Mat _Mi = matM.colRange(pos, pos + ni); Mat _mi = _m.colRange(pos, pos + ni); solvePnP(_Mi, _mi, A, _k, _ri, _ti, false); pos += ni; } //std::cout << "single camera calib. param before LM: " << param0.t() << "\n"; //std::cout << "single camera calib. mask: " << mask0.t() << "\n"; // 3. run the optimization Mat errBuf( maxPoints*2, 1, CV_64FC1 ); Mat JiBuf ( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0)); Mat JeBuf ( maxPoints*2, 6, CV_64FC1 ); Mat JoBuf; if (releaseObject) JoBuf = Mat( maxPoints*2, maxPoints*3, CV_64FC1); auto cameraCalcJErr = [&, npoints, nimages, flags, releaseObject, nparams, maxPoints, NINTRINSIC] (InputOutputArray _param, OutputArray _JtErr, OutputArray _JtJ, double& errnorm) -> bool { bool optimizeObjPoints = releaseObject; Mat_ param_m = _param.getMat(); param_m = param_m.reshape(1, max(param_m.rows, param_m.cols)); if( flags & CALIB_FIX_ASPECT_RATIO ) { param_m(0) = param_m(1)*aspectRatio; } double fx = param_m(0), fy = param_m(1), cx = param_m(2), cy = param_m(3); Matx33d intrin(fx, 0, cx, 0, fy, cy, 0, 0, 1); Mat dist = param_m.rowRange(4, 4+14); bool calcJ = !_JtErr.empty() && !_JtJ.empty(); Mat JtErr, JtJ; if (calcJ) { JtErr = _JtErr.getMat(); JtJ = _JtJ.getMat(); JtJ.setZero(); JtErr.setZero(); } double reprojErr = 0; int so = NINTRINSIC + nimages * 6; int pos = 0; for( int i = 0; i < nimages; i++ ) { int si = NINTRINSIC + i * 6; int ni = npoints.at(i); Mat _ri = param_m.rowRange(si, si + 3); Mat _ti = param_m.rowRange(si + 3, si + 6); Mat _Mi = matM.colRange(pos, pos + ni); if( optimizeObjPoints ) { _Mi = param_m.rowRange(so, so + ni * 3); _Mi = _Mi.reshape(3, 1); } Mat _mi = _m.colRange(pos, pos + ni); Mat _me = allErrors.colRange(pos, pos + ni); Mat Jo; if (optimizeObjPoints) Jo = JoBuf(Range(0, ni*2), Range(0, ni*3)); Mat Je = JeBuf.rowRange(0, ni*2); Mat Ji = JiBuf.rowRange(0, ni*2); Mat err = errBuf.rowRange(0, ni*2); Mat _mp = err.reshape(2, 1); if( calcJ ) { Mat _dpdr = Je.colRange(0, 3); Mat _dpdt = Je.colRange(3, 6); Mat _dpdf = (flags & CALIB_FIX_FOCAL_LENGTH) ? Mat() : Ji.colRange(0, 2); Mat _dpdc = (flags & CALIB_FIX_PRINCIPAL_POINT) ? Mat() : Ji.colRange(2, 4); Mat _dpdk = Ji.colRange(4, NINTRINSIC); Mat _dpdo = Jo.empty() ? Mat() : Jo.colRange(0, ni * 3); projectPoints(_Mi, _ri, _ti, intrin, dist, _mp, _dpdr, _dpdt, (_dpdf.empty() ? noArray() : _dpdf), (_dpdc.empty() ? noArray() : _dpdc), _dpdk, (_dpdo.empty() ? noArray() : _dpdo), (flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0.); } else projectPoints( _Mi, _ri, _ti, intrin, dist, _mp); subtract( _mp, _mi, _mp ); _mp.copyTo(_me); if( calcJ ) { // see HZ: (A6.14) for details on the structure of the Jacobian JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += Ji.t() * Ji; JtJ(Rect(si, si, 6, 6)) = Je.t() * Je; JtJ(Rect(si, 0, 6, NINTRINSIC)) = Ji.t() * Je; if( optimizeObjPoints ) { JtJ(Rect(so, 0, maxPoints * 3, NINTRINSIC)) += Ji.t() * Jo; JtJ(Rect(so, si, maxPoints * 3, 6)) += Je.t() * Jo; JtJ(Rect(so, so, maxPoints * 3, maxPoints * 3)) += Jo.t() * Jo; } JtErr.rowRange(0, NINTRINSIC) += Ji.t() * err; JtErr.rowRange(si, si + 6) = Je.t() * err; if( optimizeObjPoints ) { JtErr.rowRange(so, nparams) += Jo.t() * err; } } double viewErr = norm(err, NORM_L2SQR); if( !perViewErr.empty() ) perViewErr.at(i) = std::sqrt(viewErr / ni); reprojErr += viewErr; pos += ni; } errnorm = reprojErr; return true; }; LevMarq solver(param, cameraCalcJErr, LevMarq::Settings() .setMaxIterations((unsigned int)termCrit.maxCount) .setStepNormTolerance(termCrit.epsilon) .setSmallEnergyTolerance(termCrit.epsilon * termCrit.epsilon), mask, MatrixType::AUTO, VariableType::LINEAR, /* LtoR */ false, solveMethod); // geodesic is not supported for normal callbacks solver.optimize(); //std::cout << "single camera calib. param after LM: " << param0.t() << "\n"; // If solver failed, then the last calculated perViewErr can be wrong & should be recalculated Mat JtErr, JtJ, JtJinv, JtJN; double reprojErr = 0; if (!stdDevs.empty()) { JtErr = Mat(nparams, 1, CV_64F); JtJ = Mat(nparams, nparams, CV_64F); JtErr.setZero(); JtJ.setZero(); } cameraCalcJErr(param, JtErr, JtJ, reprojErr); if (!stdDevs.empty()) { int nparams_nz = countNonZero(mask); JtJN.create(nparams_nz, nparams_nz, CV_64F); subMatrix(JtJ, JtJN, mask, mask); completeSymm(JtJN, false); //TODO: try DECOMP_CHOLESKY maybe? cv::invert(JtJN, JtJinv, DECOMP_EIG); // sigma2 is deviation of the noise // see any papers about variance of the least squares estimator for // detailed description of the variance estimation methods double sigma2 = norm(allErrors, NORM_L2SQR) / (total - nparams_nz); int j = 0; for ( int s = 0; s < nparams; s++ ) if( mask[s] ) { stdDevs.at(s) = std::sqrt(JtJinv.at(j,j) * sigma2); j++; } else stdDevs.at(s) = 0.; } // 4. store the results A = Matx33d(param[0], 0, param[2], 0, param[1], param[3], 0, 0, 1); A.convertTo(cameraMatrix, cameraMatrix.type()); _k = Mat(distCoeffs.size(), CV_64F, param.data() + 4); _k.convertTo(distCoeffs, distCoeffs.type()); if( !newObjPoints.empty() && releaseObject ) { int s = NINTRINSIC + nimages * 6; Mat _Mi = paramM.rowRange(s, s + maxPoints * 3); _Mi.reshape(3, 1).convertTo(newObjPoints, newObjPoints.type()); } for(int i = 0; i < nimages; i++ ) { if( !rvecs.empty() ) { //TODO: fix it Mat src = Mat(3, 1, CV_64F, param.data() + NINTRINSIC + i*6); if( rvecs.rows == nimages && rvecs.cols*rvecs.channels() == 9 ) { Mat dst(3, 3, rvecs.depth(), rvecs.ptr(i)); Rodrigues(src, A); A.convertTo(dst, dst.type()); } else { Mat dst(3, 1, rvecs.depth(), rvecs.rows == 1 ? rvecs.data + i*rvecs.elemSize1() : rvecs.ptr(i)); src.convertTo(dst, dst.type()); } } if( !tvecs.empty() ) { //TODO: fix it Mat src(3, 1, CV_64F, param.data() + NINTRINSIC + i*6 + 3); Mat dst(3, 1, tvecs.depth(), tvecs.rows == 1 ? tvecs.data + i*tvecs.elemSize1() : tvecs.ptr(i)); src.convertTo(dst, dst.type()); } } return std::sqrt(reprojErr/total); } //////////////////////////////// Stereo Calibration /////////////////////////////////// static double stereoCalibrateImpl( const Mat& _objectPoints, const Mat& _imagePoints1, const Mat& _imagePoints2, const Mat& _npoints, Mat& _cameraMatrix1, Mat& _distCoeffs1, Mat& _cameraMatrix2, Mat& _distCoeffs2, Size imageSize, Mat matR, Mat matT, Mat matE, Mat matF, Mat perViewErr, int flags, TermCriteria termCrit ) { int NINTRINSIC = CALIB_NINTRINSIC; double dk[2][14]={{0}}; Mat Dist[2]; Matx33d A[2]; int pointsTotal = 0, maxPoints = 0, nparams; bool recomputeIntrinsics = false; double aspectRatio[2] = {0, 0}; CV_Assert( _imagePoints1.type() == _imagePoints2.type() && _imagePoints1.depth() == _objectPoints.depth() ); CV_Assert( (_npoints.cols == 1 || _npoints.rows == 1) && _npoints.type() == CV_32S ); int nimages = (int)_npoints.total(); for(int i = 0; i < nimages; i++ ) { int ni = _npoints.at(i); maxPoints = std::max(maxPoints, ni); pointsTotal += ni; } Mat objectPoints; Mat imagePoints[2]; _objectPoints.convertTo(objectPoints, CV_64F); objectPoints = objectPoints.reshape(3, 1); for(int k = 0; k < 2; k++ ) { const Mat& points = k == 0 ? _imagePoints1 : _imagePoints2; const Mat& cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2; const Mat& distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2; int depth = points.depth(); int cn = points.channels(); CV_Assert( (depth == CV_32F || depth == CV_64F) && ((points.rows == pointsTotal && points.cols*cn == 2) || (points.rows == 1 && points.cols == pointsTotal && cn == 2))); A[k] = Matx33d(1, 0, 0, 0, 1, 0, 0, 0, 1); Dist[k] = Mat(1,14,CV_64F,dk[k]); points.convertTo(imagePoints[k], CV_64F); imagePoints[k] = imagePoints[k].reshape(2, 1); if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS| CALIB_FIX_ASPECT_RATIO|CALIB_FIX_FOCAL_LENGTH) ) cameraMatrix.convertTo(A[k], CV_64F); if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS| CALIB_FIX_K1|CALIB_FIX_K2|CALIB_FIX_K3|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6| CALIB_FIX_TANGENT_DIST) ) { Mat tdist( distCoeffs.size(), CV_MAKETYPE(CV_64F, distCoeffs.channels()), dk[k] ); distCoeffs.convertTo(tdist, CV_64F); } if( !(flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS))) { Mat matA(A[k], false); calibrateCameraInternal(objectPoints, imagePoints[k], _npoints, imageSize, 0, matA, Dist[k], Mat(), Mat(), Mat(), Mat(), Mat(), flags, termCrit); } } if( flags & CALIB_SAME_FOCAL_LENGTH ) { A[0](0, 0) = A[1](0, 0) = (A[0](0, 0) + A[1](0, 0))*0.5; A[0](0, 2) = A[1](0, 2) = (A[0](0, 2) + A[1](0, 2))*0.5; A[0](1, 1) = A[1](1, 1) = (A[0](1, 1) + A[1](1, 1))*0.5; A[0](1, 2) = A[1](1, 2) = (A[0](1, 2) + A[1](1, 2))*0.5; } if( flags & CALIB_FIX_ASPECT_RATIO ) { for(int k = 0; k < 2; k++ ) aspectRatio[k] = A[k](0, 0)/A[k](1, 1); } recomputeIntrinsics = (flags & CALIB_FIX_INTRINSIC) == 0; // we optimize for the inter-camera R(3),t(3), then, optionally, // for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters). // Param mapping is: // - from 0 next 6: stereo pair Rt, from 6+i*6 next 6: Rt for each ith camera of nimages, // - from 6*(nimages+1) next NINTRINSICS: intrinsics for 1st camera: fx, fy, cx, cy, 14 x dist // - next NINTRINSICS: the same for for 2nd camera nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0); std::vector mask(nparams, (uchar)1); std::vector param(nparams, 0.); if( recomputeIntrinsics ) { size_t idx = nparams - NINTRINSIC*2; if( !(flags & CALIB_RATIONAL_MODEL) ) flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6; if( !(flags & CALIB_THIN_PRISM_MODEL) ) flags |= CALIB_FIX_S1_S2_S3_S4; if( !(flags & CALIB_TILTED_MODEL) ) flags |= CALIB_FIX_TAUX_TAUY; if( flags & CALIB_FIX_ASPECT_RATIO ) mask[idx + 0] = mask[idx + NINTRINSIC] = 0; if ( flags & CALIB_SAME_FOCAL_LENGTH) mask[idx + NINTRINSIC] = mask[idx + NINTRINSIC + 1] = 0; if( flags & CALIB_FIX_FOCAL_LENGTH ) mask[idx + 0] = mask[idx + 1] = mask[idx + NINTRINSIC] = mask[idx + NINTRINSIC+1] = 0; if( flags & CALIB_FIX_PRINCIPAL_POINT ) mask[idx + 2] = mask[idx + 3] = mask[idx + NINTRINSIC+2] = mask[idx + NINTRINSIC+3] = 0; if( flags & (CALIB_ZERO_TANGENT_DIST|CALIB_FIX_TANGENT_DIST) ) mask[idx + 6] = mask[idx + 7] = mask[idx + NINTRINSIC+6] = mask[idx + NINTRINSIC+7] = 0; if( flags & CALIB_FIX_K1 ) mask[idx + 4] = mask[idx + NINTRINSIC+4] = 0; if( flags & CALIB_FIX_K2 ) mask[idx + 5] = mask[idx + NINTRINSIC+5] = 0; if( flags & CALIB_FIX_K3 ) mask[idx + 8] = mask[idx + NINTRINSIC+8] = 0; if( flags & CALIB_FIX_K4 ) mask[idx + 9] = mask[idx + NINTRINSIC+9] = 0; if( flags & CALIB_FIX_K5 ) mask[idx + 10] = mask[idx + NINTRINSIC+10] = 0; if( flags & CALIB_FIX_K6 ) mask[idx + 11] = mask[idx + NINTRINSIC+11] = 0; if( flags & CALIB_FIX_S1_S2_S3_S4 ) { mask[idx + 12] = mask[idx + NINTRINSIC+12] = 0; mask[idx + 13] = mask[idx + NINTRINSIC+13] = 0; mask[idx + 14] = mask[idx + NINTRINSIC+14] = 0; mask[idx + 15] = mask[idx + NINTRINSIC+15] = 0; } if( flags & CALIB_FIX_TAUX_TAUY ) { mask[idx + 16] = mask[idx + NINTRINSIC+16] = 0; mask[idx + 17] = mask[idx + NINTRINSIC+17] = 0; } } // storage for initial [om(R){i}|t{i}] (in order to compute the median for each component) std::vector rtsort(nimages*6); /* Compute initial estimate of pose For each image, compute: R(om) is the rotation matrix of om om(R) is the rotation vector of R R_ref = R(om_right) * R(om_left)' T_ref_list = [T_ref_list; T_right - R_ref * T_left] om_ref_list = {om_ref_list; om(R_ref)] om = median(om_ref_list) T = median(T_ref_list) */ int pos = 0; for(int i = 0; i < nimages; i++ ) { int ni = _npoints.at(i); Mat objpt_i = objectPoints.colRange(pos, pos + ni); Matx33d R[2]; Vec3d rv, T[2]; for(int k = 0; k < 2; k++ ) { Mat imgpt_ik = imagePoints[k].colRange(pos, pos + ni); solvePnP(objpt_i, imgpt_ik, A[k], Dist[k], rv, T[k], false, SOLVEPNP_ITERATIVE ); Rodrigues(rv, R[k]); if( k == 0 ) { // save initial om_left and T_left param[(i+1)*6 + 0] = rv[0]; param[(i+1)*6 + 1] = rv[1]; param[(i+1)*6 + 2] = rv[2]; param[(i+1)*6 + 3] = T[0][0]; param[(i+1)*6 + 4] = T[0][1]; param[(i+1)*6 + 5] = T[0][2]; } } R[0] = R[1]*R[0].t(); T[1] -= R[0]*T[0]; Rodrigues(R[0], rv); rtsort[i + nimages*0] = rv[0]; rtsort[i + nimages*1] = rv[1]; rtsort[i + nimages*2] = rv[2]; rtsort[i + nimages*3] = T[1][0]; rtsort[i + nimages*4] = T[1][1]; rtsort[i + nimages*5] = T[1][2]; pos += ni; } if(flags & CALIB_USE_EXTRINSIC_GUESS) { Vec3d R, T; matT.convertTo(T, CV_64F); if( matR.rows == 3 && matR.cols == 3 ) Rodrigues(matR, R); else matR.convertTo(R, CV_64F); param[0] = R[0]; param[1] = R[1]; param[2] = R[2]; param[3] = T[0]; param[4] = T[1]; param[5] = T[2]; } else { // find the medians and save the first 6 parameters for(int i = 0; i < 6; i++ ) { size_t idx = i*nimages; std::nth_element(rtsort.begin() + idx, rtsort.begin() + idx + nimages/2, rtsort.begin() + idx + nimages); double h = rtsort[idx + nimages/2]; param[i] = (nimages % 2 == 0) ? (h + rtsort[idx + nimages/2 - 1]) * 0.5 : h; } } if( recomputeIntrinsics ) { for(int k = 0; k < 2; k++ ) { size_t idx = (nimages+1)*6 + k*NINTRINSIC; if( flags & CALIB_ZERO_TANGENT_DIST ) dk[k][2] = dk[k][3] = 0; param[idx + 0] = A[k](0, 0); param[idx + 1] = A[k](1, 1); param[idx + 2] = A[k](0, 2); param[idx + 3] = A[k](1, 2); for (int i = 0; i < 14; i++) { param[idx + 4 + i] = dk[k][i]; } } } // Preallocated place for callback calculations Mat errBuf( maxPoints*2, 1, CV_64F ); Mat JeBuf( maxPoints*2, 6, CV_64F ); Mat J_LRBuf( maxPoints*2, 6, CV_64F ); Mat JiBuf( maxPoints*2, NINTRINSIC, CV_64F, Scalar(0) ); auto lmcallback = [&, recomputeIntrinsics, nimages, flags, NINTRINSIC, _npoints] (InputOutputArray _param, OutputArray JtErr_, OutputArray JtJ_, double& errnorm) { Mat_ param_m = _param.getMat(); Vec3d om_LR(param_m(0), param_m(1), param_m(2)); Vec3d T_LR(param_m(3), param_m(4), param_m(5)); Vec3d om[2], T[2]; Matx33d dr3dr1, dr3dr2, dt3dr2, dt3dt1, dt3dt2; Matx33d intrin[2]; std::vector< std::vector > distCoeffs(2, std::vector(14, 0.0)); double reprojErr = 0; if( recomputeIntrinsics ) { int idx = (nimages+1)*6; if( flags & CALIB_SAME_FOCAL_LENGTH ) { param_m(idx + NINTRINSIC ) = param_m(idx + 0); param_m(idx + NINTRINSIC+1) = param_m(idx + 1); } if( flags & CALIB_FIX_ASPECT_RATIO ) { param_m(idx + 0) = aspectRatio[0]*param_m(idx + 1 ); param_m(idx + NINTRINSIC) = aspectRatio[1]*param_m(idx + 1 + NINTRINSIC); } for(int k = 0; k < 2; k++ ) { double fx = param_m(idx + k*NINTRINSIC+0), fy = param_m(idx + k*NINTRINSIC+1); double cx = param_m(idx + k*NINTRINSIC+2), cy = param_m(idx + k*NINTRINSIC+3); intrin[k] = Matx33d(fx, 0, cx, 0, fy, cy, 0, 0, 1); for(int j = 0; j < 14; j++) distCoeffs[k][j] = param_m(idx + k*NINTRINSIC+4+j); } } else { for (int k = 0; k < 2; k++) { intrin[k] = A[k]; for(int j = 0; j < 14; j++) distCoeffs[k][j] = dk[k][j]; } } int ptPos = 0; for(int i = 0; i < nimages; i++ ) { int ni = _npoints.at(i); int idx = (i+1)*6; om[0] = Vec3d(param_m(idx + 0), param_m(idx + 1), param_m(idx + 2)); T[0] = Vec3d(param_m(idx + 3), param_m(idx + 4), param_m(idx + 5)); if( JtJ_.needed() || JtErr_.needed() ) composeRT( om[0], T[0], om_LR, T_LR, om[1], T[1], dr3dr1, noArray(), dr3dr2, noArray(), noArray(), dt3dt1, dt3dr2, dt3dt2 ); else composeRT( om[0], T[0], om_LR, T_LR, om[1], T[1] ); Mat objpt_i = objectPoints(Range::all(), Range(ptPos, ptPos + ni)); Mat err = errBuf (Range(0, ni*2), Range::all()); Mat Je = JeBuf (Range(0, ni*2), Range::all()); Mat J_LR = J_LRBuf(Range(0, ni*2), Range::all()); Mat Ji = JiBuf (Range(0, ni*2), Range::all()); Mat tmpImagePoints = err.reshape(2, 1); Mat dpdf = Ji.colRange(0, 2); Mat dpdc = Ji.colRange(2, 4); Mat dpdk = Ji.colRange(4, NINTRINSIC); Mat dpdrot = Je.colRange(0, 3); Mat dpdt = Je.colRange(3, 6); for(int k = 0; k < 2; k++ ) { Mat imgpt_ik = imagePoints[k](Range::all(), Range(ptPos, ptPos + ni)); if( JtJ_.needed() || JtErr_.needed() ) projectPoints(objpt_i, om[k], T[k], intrin[k], distCoeffs[k], tmpImagePoints, dpdrot, dpdt, dpdf, dpdc, dpdk, noArray(), (flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio[k] : 0.); else projectPoints(objpt_i, om[k], T[k], intrin[k], distCoeffs[k], tmpImagePoints); subtract( tmpImagePoints, imgpt_ik, tmpImagePoints ); if( JtJ_.needed() ) { Mat JtErr = JtErr_.getMat(); Mat JtJ = JtJ_.getMat(); int iofs = (nimages+1)*6 + k*NINTRINSIC, eofs = (i+1)*6; assert( JtJ_.needed() && JtErr_.needed() ); if( k == 1 ) { // d(err_{x|y}R) ~ de3 // convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2} for(int p = 0; p < ni*2; p++ ) { Matx13d de3dr3, de3dt3, de3dr2, de3dt2, de3dr1, de3dt1; for(int j = 0; j < 3; j++) de3dr3(j) = Je.at(p, j); for(int j = 0; j < 3; j++) de3dt3(j) = Je.at(p, 3+j); for(int j = 0; j < 3; j++) de3dr2(j) = J_LR.at(p, j); for(int j = 0; j < 3; j++) de3dt2(j) = J_LR.at(p, 3+j); de3dr1 = de3dr3 * dr3dr1; de3dt1 = de3dt3 * dt3dt1; de3dr2 = de3dr3 * dr3dr2 + de3dt3 * dt3dr2; de3dt2 = de3dt3 * dt3dt2; for(int j = 0; j < 3; j++) Je.at(p, j) = de3dr1(j); for(int j = 0; j < 3; j++) Je.at(p, 3+j) = de3dt1(j); for(int j = 0; j < 3; j++) J_LR.at(p, j) = de3dr2(j); for(int j = 0; j < 3; j++) J_LR.at(p, 3+j) = de3dt2(j); } JtJ(Rect(0, 0, 6, 6)) += J_LR.t()*J_LR; JtJ(Rect(eofs, 0, 6, 6)) = J_LR.t()*Je; JtErr.rowRange(0, 6) += J_LR.t()*err; } JtJ(Rect(eofs, eofs, 6, 6)) += Je.t()*Je; JtErr.rowRange(eofs, eofs + 6) += Je.t()*err; if( recomputeIntrinsics ) { JtJ(Rect(iofs, iofs, NINTRINSIC, NINTRINSIC)) += Ji.t()*Ji; JtJ(Rect(iofs, eofs, NINTRINSIC, 6)) += Je.t()*Ji; if( k == 1 ) { JtJ(Rect(iofs, 0, NINTRINSIC, 6)) += J_LR.t()*Ji; } JtErr.rowRange(iofs, iofs + NINTRINSIC) += Ji.t()*err; } } double viewErr = norm(err, NORM_L2SQR); if(!perViewErr.empty()) perViewErr.at(i, k) = std::sqrt(viewErr/ni); reprojErr += viewErr; } ptPos += ni; } errnorm = reprojErr; return true; }; double reprojErr = 0; if (countNonZero(mask)) { LevMarq solver(param, lmcallback, LevMarq::Settings() .setMaxIterations((unsigned int)termCrit.maxCount) .setStepNormTolerance(termCrit.epsilon) .setSmallEnergyTolerance(termCrit.epsilon * termCrit.epsilon), mask); // geodesic not supported for normal callbacks LevMarq::Report r = solver.optimize(); // If solver failed, then the last calculated perViewErr can be wrong & should be recalculated if (!r.found && !perViewErr.empty()) { lmcallback(param, noArray(), noArray(), reprojErr); } reprojErr = r.energy; } // Extract optimized params from the param vector Vec3d om_LR(param[0], param[1], param[2]); Vec3d T_LR(param[3], param[4], param[5]); Matx33d R_LR; Rodrigues( om_LR, R_LR ); if( matR.rows == 1 || matR.cols == 1 ) om_LR.convertTo(matR, matR.depth()); else R_LR.convertTo(matR, matR.depth()); T_LR.convertTo(matT, matT.depth()); if( recomputeIntrinsics ) { for(int k = 0; k < 2; k++ ) { size_t idx = (nimages+1)*6 + k*NINTRINSIC; A[k] = Matx33d(param[idx + 0], 0, param[idx + 2], 0, param[idx + 1], param[idx + 3], 0, 0, 1); Mat& cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2; Mat& distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2; A[k].convertTo(cameraMatrix, cameraMatrix.depth()); Mat tdist( distCoeffs.size(), CV_MAKETYPE(CV_64F,distCoeffs.channels()), Dist[k].data ); tdist.convertTo(distCoeffs, distCoeffs.depth()); } } if( !matE.empty() || !matF.empty() ) { Matx33d Tx(0, -T_LR[2], T_LR[1], T_LR[2], 0, -T_LR[0], -T_LR[1], T_LR[0], 0); Matx33d E = Tx*R_LR; if( !matE.empty() ) E.convertTo(matE, matE.depth()); if( !matF.empty()) { Matx33d iA0 = A[0].inv(), iA1 = A[1].inv(); Matx33d F = iA1.t() * E * iA0; F.convertTo(matF, matF.depth(), fabs(F(2,2)) > 0 ? 1./F(2,2) : 1.); } } return std::sqrt(reprojErr/(pointsTotal*2)); } static void collectCalibrationData( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, int iFixedPoint, OutputArray objPt, OutputArray imgPt1, OutputArray imgPt2, OutputArray npoints ) { int nimages = (int)objectPoints.total(); int total = 0; CV_Assert(nimages > 0); CV_CheckEQ(nimages, (int)imagePoints1.total(), ""); if (!imagePoints2.empty()) { CV_CheckEQ(nimages, (int)imagePoints2.total(), ""); CV_Assert(imgPt2.needed()); } for (int i = 0; i < nimages; i++) { Mat objectPoint = objectPoints.getMat(i); if (objectPoint.empty()) CV_Error(CV_StsBadSize, "objectPoints should not contain empty vector of vectors of points"); int numberOfObjectPoints = objectPoint.checkVector(3, CV_32F); if (numberOfObjectPoints <= 0) CV_Error(CV_StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f"); Mat imagePoint1 = imagePoints1.getMat(i); if (imagePoint1.empty()) CV_Error(CV_StsBadSize, "imagePoints1 should not contain empty vector of vectors of points"); int numberOfImagePoints = imagePoint1.checkVector(2, CV_32F); if (numberOfImagePoints <= 0) CV_Error(CV_StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f"); CV_CheckEQ(numberOfObjectPoints, numberOfImagePoints, "Number of object and image points must be equal"); total += numberOfObjectPoints; } npoints.create(1, (int)nimages, CV_32S); objPt.create(1, (int)total, CV_32FC3); imgPt1.create(1, (int)total, CV_32FC2); Point2f* imgPtData2 = 0; Mat imgPt1Mat = imgPt1.getMat(); if (!imagePoints2.empty()) { imgPt2.create(1, (int)total, CV_32FC2); imgPtData2 = imgPt2.getMat().ptr(); } Mat nPointsMat = npoints.getMat(); Mat objPtMat = objPt.getMat(); Point3f* objPtData = objPtMat.ptr(); Point2f* imgPtData1 = imgPt1.getMat().ptr(); for (int i = 0, j = 0; i < nimages; i++) { Mat objpt = objectPoints.getMat(i); Mat imgpt1 = imagePoints1.getMat(i); int numberOfObjectPoints = objpt.checkVector(3, CV_32F); nPointsMat.at(i) = numberOfObjectPoints; for (int n = 0; n < numberOfObjectPoints; ++n) { objPtData[j + n] = objpt.ptr()[n]; imgPtData1[j + n] = imgpt1.ptr()[n]; } if (imgPtData2) { Mat imgpt2 = imagePoints2.getMat(i); int numberOfImage2Points = imgpt2.checkVector(2, CV_32F); CV_CheckEQ(numberOfObjectPoints, numberOfImage2Points, "Number of object and image(2) points must be equal"); for (int n = 0; n < numberOfImage2Points; ++n) { imgPtData2[j + n] = imgpt2.ptr()[n]; } } j += numberOfObjectPoints; } int ni = nPointsMat.at(0); bool releaseObject = iFixedPoint > 0 && iFixedPoint < ni - 1; // check object points. If not qualified, report errors. if( releaseObject ) { for (int i = 1; i < nimages; i++) { if( nPointsMat.at(i) != ni ) { CV_Error( CV_StsBadArg, "All objectPoints[i].size() should be equal when " "object-releasing method is requested." ); } Mat ocmp = objPtMat.colRange(ni * i, ni * i + ni) != objPtMat.colRange(0, ni); ocmp = ocmp.reshape(1); if( countNonZero(ocmp) ) { CV_Error( CV_StsBadArg, "All objectPoints[i] should be identical when object-releasing" " method is requested." ); } } } } static void collectCalibrationData( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, OutputArray objPt, OutputArray imgPtMat1, OutputArray imgPtMat2, OutputArray npoints ) { collectCalibrationData( objectPoints, imagePoints1, imagePoints2, -1, objPt, imgPtMat1, imgPtMat2, npoints ); } static Mat prepareCameraMatrix(Mat& cameraMatrix0, int rtype, int flags) { Mat cameraMatrix = Mat::eye(3, 3, rtype); if( cameraMatrix0.size() == cameraMatrix.size() ) cameraMatrix0.convertTo(cameraMatrix, rtype); else if( flags & CALIB_USE_INTRINSIC_GUESS ) CV_Error(Error::StsBadArg, "CALIB_USE_INTRINSIC_GUESS flag is set, but the camera matrix is not 3x3"); return cameraMatrix; } Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio ) { CV_INSTRUMENT_REGION(); Mat objPt, imgPt, npoints, cameraMatrix; collectCalibrationData( objectPoints, imagePoints, noArray(), objPt, imgPt, noArray(), npoints ); initIntrinsicParams2D( objPt, imgPt, npoints, imageSize, cameraMatrix, aspectRatio ); return cameraMatrix; } static Mat prepareDistCoeffs(Mat& distCoeffs0, int rtype, int outputSize = 14) { CV_Assert((int)distCoeffs0.total() <= outputSize); Mat distCoeffs = Mat::zeros(distCoeffs0.cols == 1 ? Size(1, outputSize) : Size(outputSize, 1), rtype); if( distCoeffs0.size() == Size(1, 4) || distCoeffs0.size() == Size(1, 5) || distCoeffs0.size() == Size(1, 8) || distCoeffs0.size() == Size(1, 12) || distCoeffs0.size() == Size(1, 14) || distCoeffs0.size() == Size(4, 1) || distCoeffs0.size() == Size(5, 1) || distCoeffs0.size() == Size(8, 1) || distCoeffs0.size() == Size(12, 1) || distCoeffs0.size() == Size(14, 1) ) { Mat dstCoeffs(distCoeffs, Rect(0, 0, distCoeffs0.cols, distCoeffs0.rows)); distCoeffs0.convertTo(dstCoeffs, rtype); } return distCoeffs; } double calibrateCamera( InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints, Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, int flags, TermCriteria criteria ) { CV_INSTRUMENT_REGION(); return calibrateCamera(_objectPoints, _imagePoints, imageSize, _cameraMatrix, _distCoeffs, _rvecs, _tvecs, noArray(), noArray(), noArray(), flags, criteria); } double calibrateCamera(InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints, Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics, OutputArray _perViewErrors, int flags, TermCriteria criteria ) { CV_INSTRUMENT_REGION(); return calibrateCameraRO(_objectPoints, _imagePoints, imageSize, -1, _cameraMatrix, _distCoeffs, _rvecs, _tvecs, noArray(), stdDeviationsIntrinsics, stdDeviationsExtrinsics, noArray(), _perViewErrors, flags, criteria); } double calibrateCameraRO(InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints, Size imageSize, int iFixedPoint, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray newObjPoints, int flags, TermCriteria criteria) { CV_INSTRUMENT_REGION(); return calibrateCameraRO(_objectPoints, _imagePoints, imageSize, iFixedPoint, _cameraMatrix, _distCoeffs, _rvecs, _tvecs, newObjPoints, noArray(), noArray(), noArray(), noArray(), flags, criteria); } double calibrateCameraRO(InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints, Size imageSize, int iFixedPoint, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray newObjPoints, OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics, OutputArray stdDeviationsObjPoints, OutputArray _perViewErrors, int flags, TermCriteria criteria ) { CV_INSTRUMENT_REGION(); int rtype = CV_64F; CV_Assert( _cameraMatrix.needed() ); CV_Assert( _distCoeffs.needed() ); Mat cameraMatrix = _cameraMatrix.getMat(); cameraMatrix = prepareCameraMatrix(cameraMatrix, rtype, flags); Mat distCoeffs = _distCoeffs.getMat(); distCoeffs = (flags & CALIB_THIN_PRISM_MODEL) && !(flags & CALIB_TILTED_MODEL) ? prepareDistCoeffs(distCoeffs, rtype, 12) : prepareDistCoeffs(distCoeffs, rtype); if( !(flags & CALIB_RATIONAL_MODEL) && (!(flags & CALIB_THIN_PRISM_MODEL)) && (!(flags & CALIB_TILTED_MODEL))) distCoeffs = distCoeffs.rows == 1 ? distCoeffs.colRange(0, 5) : distCoeffs.rowRange(0, 5); int nimages = int(_objectPoints.total()); CV_Assert( nimages > 0 ); Mat objPt, imgPt, npoints, rvecM, tvecM, stdDeviationsM, errorsM; bool rvecs_needed = _rvecs.needed(), tvecs_needed = _tvecs.needed(), stddev_needed = stdDeviationsIntrinsics.needed(), errors_needed = _perViewErrors.needed(), stddev_ext_needed = stdDeviationsExtrinsics.needed(); bool newobj_needed = newObjPoints.needed(); bool stddev_obj_needed = stdDeviationsObjPoints.needed(); bool rvecs_mat_vec = _rvecs.isMatVector(); bool tvecs_mat_vec = _tvecs.isMatVector(); if( rvecs_needed ) { _rvecs.create(nimages, 1, CV_64FC3); if(rvecs_mat_vec) rvecM.create(nimages, 3, CV_64F); else rvecM = _rvecs.getMat(); } if( tvecs_needed ) { _tvecs.create(nimages, 1, CV_64FC3); if(tvecs_mat_vec) tvecM.create(nimages, 3, CV_64F); else tvecM = _tvecs.getMat(); } collectCalibrationData( _objectPoints, _imagePoints, noArray(), iFixedPoint, objPt, imgPt, noArray(), npoints ); bool releaseObject = iFixedPoint > 0 && iFixedPoint < npoints.at(0) - 1; newobj_needed = newobj_needed && releaseObject; int np = npoints.at( 0 ); Mat newObjPt; if( newobj_needed ) { newObjPoints.create( 1, np, CV_32FC3 ); newObjPt = newObjPoints.getMat(); } stddev_obj_needed = stddev_obj_needed && releaseObject; bool stddev_any_needed = stddev_needed || stddev_ext_needed || stddev_obj_needed; if( stddev_any_needed ) { int sz = nimages*6 + CALIB_NINTRINSIC + (releaseObject ? np * 3 : 0); stdDeviationsM.create(sz, 1, CV_64F); } if( errors_needed ) { _perViewErrors.create(nimages, 1, CV_64F); errorsM = _perViewErrors.getMat(); } double reprojErr = calibrateCameraInternal( objPt, imgPt, npoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs, rvecM, tvecM, newObjPt, stdDeviationsM, errorsM, flags, cvTermCriteria(criteria)); if( stddev_needed ) { stdDeviationsM.rowRange(0, CALIB_NINTRINSIC).copyTo(stdDeviationsIntrinsics); } if ( stddev_ext_needed ) { int s = CALIB_NINTRINSIC; stdDeviationsM.rowRange(s, s + nimages*6).copyTo(stdDeviationsExtrinsics); } if( stddev_obj_needed ) { int s = CALIB_NINTRINSIC + nimages*6; stdDeviationsM.rowRange(s, s + np*3).copyTo(stdDeviationsObjPoints); } // overly complicated and inefficient rvec/ tvec handling to support vector for(int i = 0; i < nimages; i++ ) { if( rvecs_needed && rvecs_mat_vec) { _rvecs.create(3, 1, CV_64F, i, true); Mat rv = _rvecs.getMat(i); memcpy(rv.ptr(), rvecM.ptr(i), 3*sizeof(double)); } if( tvecs_needed && tvecs_mat_vec) { _tvecs.create(3, 1, CV_64F, i, true); Mat tv = _tvecs.getMat(i); memcpy(tv.ptr(), tvecM.ptr(i), 3*sizeof(double)); } } cameraMatrix.copyTo(_cameraMatrix); distCoeffs.copyTo(_distCoeffs); return reprojErr; } void calibrationMatrixValues( InputArray _cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio ) { CV_INSTRUMENT_REGION(); if(_cameraMatrix.size() != Size(3, 3)) CV_Error(CV_StsUnmatchedSizes, "Size of cameraMatrix must be 3x3!"); Matx33d A; _cameraMatrix.getMat().convertTo(A, CV_64F); CV_DbgAssert(imageSize.width != 0 && imageSize.height != 0 && A(0, 0) != 0.0 && A(1, 1) != 0.0); /* Calculate pixel aspect ratio. */ aspectRatio = A(1, 1) / A(0, 0); /* Calculate number of pixel per realworld unit. */ double mx, my; if(apertureWidth != 0.0 && apertureHeight != 0.0) { mx = imageSize.width / apertureWidth; my = imageSize.height / apertureHeight; } else { mx = 1.0; my = aspectRatio; } /* Calculate fovx and fovy. */ fovx = atan2(A(0, 2), A(0, 0)) + atan2(imageSize.width - A(0, 2), A(0, 0)); fovy = atan2(A(1, 2), A(1, 1)) + atan2(imageSize.height - A(1, 2), A(1, 1)); fovx *= 180.0 / CV_PI; fovy *= 180.0 / CV_PI; /* Calculate focal length. */ focalLength = A(0, 0) / mx; /* Calculate principle point. */ principalPoint = Point2d(A(0, 2) / mx, A(1, 2) / my); } double stereoCalibrate( InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints1, InputArrayOfArrays _imagePoints2, InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1, InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2, Size imageSize, OutputArray _Rmat, OutputArray _Tmat, OutputArray _Emat, OutputArray _Fmat, int flags, TermCriteria criteria) { if (flags & CALIB_USE_EXTRINSIC_GUESS) CV_Error(Error::StsBadFlag, "stereoCalibrate does not support CALIB_USE_EXTRINSIC_GUESS."); Mat Rmat, Tmat; double ret = stereoCalibrate(_objectPoints, _imagePoints1, _imagePoints2, _cameraMatrix1, _distCoeffs1, _cameraMatrix2, _distCoeffs2, imageSize, Rmat, Tmat, _Emat, _Fmat, noArray(), flags, criteria); Rmat.copyTo(_Rmat); Tmat.copyTo(_Tmat); return ret; } double stereoCalibrate( InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints1, InputArrayOfArrays _imagePoints2, InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1, InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2, Size imageSize, InputOutputArray _Rmat, InputOutputArray _Tmat, OutputArray _Emat, OutputArray _Fmat, OutputArray _perViewErrors, int flags , TermCriteria criteria) { int rtype = CV_64F; Mat cameraMatrix1 = _cameraMatrix1.getMat(); Mat cameraMatrix2 = _cameraMatrix2.getMat(); Mat distCoeffs1 = _distCoeffs1.getMat(); Mat distCoeffs2 = _distCoeffs2.getMat(); cameraMatrix1 = prepareCameraMatrix(cameraMatrix1, rtype, flags); cameraMatrix2 = prepareCameraMatrix(cameraMatrix2, rtype, flags); distCoeffs1 = prepareDistCoeffs(distCoeffs1, rtype); distCoeffs2 = prepareDistCoeffs(distCoeffs2, rtype); if( !(flags & CALIB_RATIONAL_MODEL) && (!(flags & CALIB_THIN_PRISM_MODEL)) && (!(flags & CALIB_TILTED_MODEL))) { distCoeffs1 = distCoeffs1.rows == 1 ? distCoeffs1.colRange(0, 5) : distCoeffs1.rowRange(0, 5); distCoeffs2 = distCoeffs2.rows == 1 ? distCoeffs2.colRange(0, 5) : distCoeffs2.rowRange(0, 5); } if((flags & CALIB_USE_EXTRINSIC_GUESS) == 0) { _Rmat.create(3, 3, rtype); _Tmat.create(3, 1, rtype); } Mat objPt, imgPt, imgPt2, npoints; collectCalibrationData( _objectPoints, _imagePoints1, _imagePoints2, objPt, imgPt, imgPt2, npoints ); Mat matR = _Rmat.getMat(), matT = _Tmat.getMat(); bool E_needed = _Emat.needed(), F_needed = _Fmat.needed(), errors_needed = _perViewErrors.needed(); Mat matE, matF, matErr; if( E_needed ) { _Emat.create(3, 3, rtype); matE = _Emat.getMat(); } if( F_needed ) { _Fmat.create(3, 3, rtype); matF = _Fmat.getMat(); } if( errors_needed ) { int nimages = int(_objectPoints.total()); _perViewErrors.create(nimages, 2, CV_64F); matErr = _perViewErrors.getMat(); } double err = stereoCalibrateImpl(objPt, imgPt, imgPt2, npoints, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, matR, matT, matE, matF, matErr, flags, criteria); cameraMatrix1.copyTo(_cameraMatrix1); cameraMatrix2.copyTo(_cameraMatrix2); distCoeffs1.copyTo(_distCoeffs1); distCoeffs2.copyTo(_distCoeffs2); return err; } } /* End of file. */