/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" /****************************************************************************************\ * PCA * \****************************************************************************************/ namespace cv { PCA::PCA() {} PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents) { operator()(data, _mean, flags, maxComponents); } PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance) { operator()(data, _mean, flags, retainedVariance); } PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents) { Mat data = _data.getMat(), _mean = __mean.getMat(); int covar_flags = CV_COVAR_SCALE; int len, in_count; Size mean_sz; CV_Assert( data.channels() == 1 ); if( flags & CV_PCA_DATA_AS_COL ) { len = data.rows; in_count = data.cols; covar_flags |= CV_COVAR_COLS; mean_sz = Size(1, len); } else { len = data.cols; in_count = data.rows; covar_flags |= CV_COVAR_ROWS; mean_sz = Size(len, 1); } int count = std::min(len, in_count), out_count = count; if( maxComponents > 0 ) out_count = std::min(count, maxComponents); // "scrambled" way to compute PCA (when cols(A)>rows(A)): // B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y if( len <= in_count ) covar_flags |= CV_COVAR_NORMAL; int ctype = std::max(CV_32F, data.depth()); mean.create( mean_sz, ctype ); Mat covar( count, count, ctype ); if( !_mean.empty() ) { CV_Assert( _mean.size() == mean_sz ); _mean.convertTo(mean, ctype); covar_flags |= CV_COVAR_USE_AVG; } calcCovarMatrix( data, covar, mean, covar_flags, ctype ); eigen( covar, eigenvalues, eigenvectors ); if( !(covar_flags & CV_COVAR_NORMAL) ) { // CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A // CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A' Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); if( data.type() != ctype || tmp_mean.data == mean.data ) { data.convertTo( tmp_data, ctype ); subtract( tmp_data, tmp_mean, tmp_data ); } else { subtract( data, tmp_mean, tmp_mean ); tmp_data = tmp_mean; } Mat evects1(count, len, ctype); gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1, (flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0); eigenvectors = evects1; // normalize eigenvectors int i; for( i = 0; i < out_count; i++ ) { Mat vec = eigenvectors.row(i); normalize(vec, vec); } } if( count > out_count ) { // use clone() to physically copy the data and thus deallocate the original matrices eigenvalues = eigenvalues.rowRange(0,out_count).clone(); eigenvectors = eigenvectors.rowRange(0,out_count).clone(); } return *this; } void PCA::write(FileStorage& fs ) const { CV_Assert( fs.isOpened() ); fs << "name" << "PCA"; fs << "vectors" << eigenvectors; fs << "values" << eigenvalues; fs << "mean" << mean; } void PCA::read(const FileNode& fs) { CV_Assert( !fs.empty() ); String name = (String)fs["name"]; CV_Assert( name == "PCA" ); cv::read(fs["vectors"], eigenvectors); cv::read(fs["values"], eigenvalues); cv::read(fs["mean"], mean); } template int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance) { CV_DbgAssert( eigenvalues.type() == DataType::type ); Mat g(eigenvalues.size(), DataType::type); for(int ig = 0; ig < g.rows; ig++) { g.at(ig, 0) = 0; for(int im = 0; im <= ig; im++) { g.at(ig,0) += eigenvalues.at(im,0); } } int L; for(L = 0; L < eigenvalues.rows; L++) { double energy = g.at(L, 0) / g.at(g.rows - 1, 0); if(energy > retainedVariance) break; } L = std::max(2, L); return L; } PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance) { Mat data = _data.getMat(), _mean = __mean.getMat(); int covar_flags = CV_COVAR_SCALE; int len, in_count; Size mean_sz; CV_Assert( data.channels() == 1 ); if( flags & CV_PCA_DATA_AS_COL ) { len = data.rows; in_count = data.cols; covar_flags |= CV_COVAR_COLS; mean_sz = Size(1, len); } else { len = data.cols; in_count = data.rows; covar_flags |= CV_COVAR_ROWS; mean_sz = Size(len, 1); } CV_Assert( retainedVariance > 0 && retainedVariance <= 1 ); int count = std::min(len, in_count); // "scrambled" way to compute PCA (when cols(A)>rows(A)): // B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y if( len <= in_count ) covar_flags |= CV_COVAR_NORMAL; int ctype = std::max(CV_32F, data.depth()); mean.create( mean_sz, ctype ); Mat covar( count, count, ctype ); if( !_mean.empty() ) { CV_Assert( _mean.size() == mean_sz ); _mean.convertTo(mean, ctype); } calcCovarMatrix( data, covar, mean, covar_flags, ctype ); eigen( covar, eigenvalues, eigenvectors ); if( !(covar_flags & CV_COVAR_NORMAL) ) { // CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A // CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A' Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); if( data.type() != ctype || tmp_mean.data == mean.data ) { data.convertTo( tmp_data, ctype ); subtract( tmp_data, tmp_mean, tmp_data ); } else { subtract( data, tmp_mean, tmp_mean ); tmp_data = tmp_mean; } Mat evects1(count, len, ctype); gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1, (flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0); eigenvectors = evects1; // normalize all eigenvectors int i; for( i = 0; i < eigenvectors.rows; i++ ) { Mat vec = eigenvectors.row(i); normalize(vec, vec); } } // compute the cumulative energy content for each eigenvector int L; if (ctype == CV_32F) L = computeCumulativeEnergy(eigenvalues, retainedVariance); else L = computeCumulativeEnergy(eigenvalues, retainedVariance); // use clone() to physically copy the data and thus deallocate the original matrices eigenvalues = eigenvalues.rowRange(0,L).clone(); eigenvectors = eigenvectors.rowRange(0,L).clone(); return *this; } void PCA::project(InputArray _data, OutputArray result) const { Mat data = _data.getMat(); CV_Assert( !mean.empty() && !eigenvectors.empty() && ((mean.rows == 1 && mean.cols == data.cols) || (mean.cols == 1 && mean.rows == data.rows))); Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); int ctype = mean.type(); if( data.type() != ctype || tmp_mean.data == mean.data ) { data.convertTo( tmp_data, ctype ); subtract( tmp_data, tmp_mean, tmp_data ); } else { subtract( data, tmp_mean, tmp_mean ); tmp_data = tmp_mean; } if( mean.rows == 1 ) gemm( tmp_data, eigenvectors, 1, Mat(), 0, result, GEMM_2_T ); else gemm( eigenvectors, tmp_data, 1, Mat(), 0, result, 0 ); } Mat PCA::project(InputArray data) const { Mat result; project(data, result); return result; } void PCA::backProject(InputArray _data, OutputArray result) const { Mat data = _data.getMat(); CV_Assert( !mean.empty() && !eigenvectors.empty() && ((mean.rows == 1 && eigenvectors.rows == data.cols) || (mean.cols == 1 && eigenvectors.rows == data.rows))); Mat tmp_data, tmp_mean; data.convertTo(tmp_data, mean.type()); if( mean.rows == 1 ) { tmp_mean = repeat(mean, data.rows, 1); gemm( tmp_data, eigenvectors, 1, tmp_mean, 1, result, 0 ); } else { tmp_mean = repeat(mean, 1, data.cols); gemm( eigenvectors, tmp_data, 1, tmp_mean, 1, result, GEMM_1_T ); } } Mat PCA::backProject(InputArray data) const { Mat result; backProject(data, result); return result; } } void cv::PCACompute(InputArray data, InputOutputArray mean, OutputArray eigenvectors, int maxComponents) { PCA pca; pca(data, mean, 0, maxComponents); pca.mean.copyTo(mean); pca.eigenvectors.copyTo(eigenvectors); } void cv::PCACompute(InputArray data, InputOutputArray mean, OutputArray eigenvectors, double retainedVariance) { PCA pca; pca(data, mean, 0, retainedVariance); pca.mean.copyTo(mean); pca.eigenvectors.copyTo(eigenvectors); } void cv::PCAProject(InputArray data, InputArray mean, InputArray eigenvectors, OutputArray result) { PCA pca; pca.mean = mean.getMat(); pca.eigenvectors = eigenvectors.getMat(); pca.project(data, result); } void cv::PCABackProject(InputArray data, InputArray mean, InputArray eigenvectors, OutputArray result) { PCA pca; pca.mean = mean.getMat(); pca.eigenvectors = eigenvectors.getMat(); pca.backProject(data, result); }