// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2017-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. /* Test for Tensorflow models loading */ #include "test_precomp.hpp" #include "npy_blob.hpp" #include // CV_DNN_REGISTER_LAYER_CLASS namespace opencv_test { using namespace cv; using namespace cv::dnn; template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_TensorFlow, read_inception) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); net = readNetFromTensorflow(model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); Mat input; resize(sample, input, Size(224, 224)); input -= Scalar::all(117); // mean sub Mat inputBlob = blobFromImage(input); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); std::cout << out.dims << std::endl; } TEST(Test_TensorFlow, inception_accuracy) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); net = readNetFromTensorflow(model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); Mat inputBlob = blobFromImage(sample, 1.0, Size(224, 224), Scalar(), /*swapRB*/true); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); normAssert(ref, out); } static std::string path(const std::string& file) { return findDataFile("dnn/tensorflow/" + file); } class Test_TensorFlow_layers : public DNNTestLayer { public: void runTensorFlowNet(const std::string& prefix, bool hasText = false, double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false) { std::string netPath = path(prefix + "_net.pb"); std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : ""); std::string inpPath = path(prefix + "_in.npy"); std::string outPath = path(prefix + "_out.npy"); cv::Mat input = blobFromNPY(inpPath); cv::Mat ref = blobFromNPY(outPath); checkBackend(&input, &ref); Net net; if (memoryLoad) { // Load files into a memory buffers std::vector dataModel; readFileContent(netPath, dataModel); std::vector dataConfig; if (hasText) { readFileContent(netConfig, dataConfig); } net = readNetFromTensorflow(dataModel.data(), dataModel.size(), dataConfig.data(), dataConfig.size()); } else net = readNetFromTensorflow(netPath, netConfig); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(input); cv::Mat output = net.forward(); normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); } }; TEST_P(Test_TensorFlow_layers, conv) { runTensorFlowNet("single_conv"); runTensorFlowNet("atrous_conv2d_valid"); runTensorFlowNet("atrous_conv2d_same"); runTensorFlowNet("depthwise_conv2d"); runTensorFlowNet("keras_atrous_conv2d_same"); runTensorFlowNet("conv_pool_nchw"); } TEST_P(Test_TensorFlow_layers, Convolution3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) throw SkipTestException("Test is enabled starts from 2019R1"); #endif if (target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); runTensorFlowNet("conv3d"); } TEST_P(Test_TensorFlow_layers, padding) { runTensorFlowNet("padding_valid"); runTensorFlowNet("spatial_padding"); runTensorFlowNet("mirror_pad"); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE) { if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2019R2); if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_2019R2); } #endif runTensorFlowNet("keras_pad_concat"); } TEST_P(Test_TensorFlow_layers, padding_same) { // Reference output values are in range [0.0006, 2.798] runTensorFlowNet("padding_same"); } TEST_P(Test_TensorFlow_layers, eltwise) { runTensorFlowNet("eltwise_add_mul"); runTensorFlowNet("eltwise_sub"); } TEST_P(Test_TensorFlow_layers, pad_and_concat) { runTensorFlowNet("pad_and_concat"); } TEST_P(Test_TensorFlow_layers, concat_axis_1) { runTensorFlowNet("concat_axis_1"); } TEST_P(Test_TensorFlow_layers, batch_norm) { runTensorFlowNet("batch_norm"); runTensorFlowNet("batch_norm", false, 0.0, 0.0, true); runTensorFlowNet("fused_batch_norm"); runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true); runTensorFlowNet("batch_norm_text", true); runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true); runTensorFlowNet("unfused_batch_norm"); runTensorFlowNet("fused_batch_norm_no_gamma"); runTensorFlowNet("unfused_batch_norm_no_gamma"); runTensorFlowNet("mvn_batch_norm"); runTensorFlowNet("mvn_batch_norm_1x1"); runTensorFlowNet("switch_identity"); runTensorFlowNet("keras_batch_norm_training"); } TEST_P(Test_TensorFlow_layers, batch_norm3D) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) { if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); throw SkipTestException(""); } runTensorFlowNet("batch_norm3d"); } TEST_P(Test_TensorFlow_layers, slim_batch_norm) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); // Output values range: [-40.0597, 207.827] double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.041 : default_l1; double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.33 : default_lInf; runTensorFlowNet("slim_batch_norm", false, l1, lInf); } TEST_P(Test_TensorFlow_layers, pooling) { runTensorFlowNet("max_pool_even"); runTensorFlowNet("max_pool_odd_valid"); runTensorFlowNet("max_pool_odd_same"); runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions. } TEST_P(Test_TensorFlow_layers, max_pool_grad) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("max_pool_grad"); } // TODO: fix tests and replace to pooling TEST_P(Test_TensorFlow_layers, ave_pool_same) { // Reference output values are in range [-0.519531, 0.112976] #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif runTensorFlowNet("ave_pool_same"); } TEST_P(Test_TensorFlow_layers, MaxPooling3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) throw SkipTestException("Test is enabled starts from 2019R1"); #endif if (target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); runTensorFlowNet("max_pool3d"); } TEST_P(Test_TensorFlow_layers, AvePooling3D) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) throw SkipTestException("Test is enabled starts from 2019R1"); #endif if (target != DNN_TARGET_CPU) throw SkipTestException("Only CPU is supported"); runTensorFlowNet("ave_pool3d"); } TEST_P(Test_TensorFlow_layers, deconvolution) { runTensorFlowNet("deconvolution"); runTensorFlowNet("deconvolution_same"); runTensorFlowNet("deconvolution_stride_2_same"); runTensorFlowNet("deconvolution_adj_pad_valid"); runTensorFlowNet("deconvolution_adj_pad_same"); runTensorFlowNet("keras_deconv_valid"); runTensorFlowNet("keras_deconv_same"); runTensorFlowNet("keras_deconv_same_v2"); } TEST_P(Test_TensorFlow_layers, matmul) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); runTensorFlowNet("matmul"); runTensorFlowNet("nhwc_transpose_reshape_matmul"); // Reference output values are in range [-5.688, 4.484] double l1 = target == DNN_TARGET_MYRIAD ? 6.1e-3 : default_l1; runTensorFlowNet("nhwc_reshape_matmul", false, l1); runTensorFlowNet("matmul_layout"); } TEST_P(Test_TensorFlow_layers, reshape) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("shift_reshape_no_reorder"); runTensorFlowNet("reshape_no_reorder"); runTensorFlowNet("reshape_reduce"); runTensorFlowNet("reshape_as_shape"); } TEST_P(Test_TensorFlow_layers, flatten) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); #endif runTensorFlowNet("flatten", true); } TEST_P(Test_TensorFlow_layers, unfused_flatten) { runTensorFlowNet("unfused_flatten"); runTensorFlowNet("unfused_flatten_unknown_batch"); } TEST_P(Test_TensorFlow_layers, leaky_relu) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif runTensorFlowNet("leaky_relu_order1"); runTensorFlowNet("leaky_relu_order2"); runTensorFlowNet("leaky_relu_order3"); } TEST_P(Test_TensorFlow_layers, l2_normalize) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif runTensorFlowNet("l2_normalize"); } // TODO: fix it and add to l2_normalize TEST_P(Test_TensorFlow_layers, l2_normalize_3d) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) ) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif runTensorFlowNet("l2_normalize_3d"); } class Test_TensorFlow_nets : public DNNTestLayer {}; TEST_P(Test_TensorFlow_nets, MobileNet_SSD) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) { #if INF_ENGINE_VER_MAJOR_GE(2019020000) if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif } #endif checkBackend(); std::string imgPath = findDataFile("dnn/street.png"); std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt"); std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false); Mat inp; resize(imread(imgPath), inp, Size(300, 300)); inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true); Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco.detection_out.npy")); Net net = readNetFromTensorflow(netPath, netConfig); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); Mat out = net.forward(); double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0043 : default_l1; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.037 : default_lInf; normAssertDetections(ref, out, "", 0.2, scoreDiff, iouDiff); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE >= 2019010000 expectNoFallbacksFromIE(net); #endif } TEST_P(Test_TensorFlow_nets, Inception_v2_SSD) { applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif checkBackend(); Mat img = imread(findDataFile("dnn/street.png")); std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt"); std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false); Net net = readNetFromTensorflow(model, proto); Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); Mat ref = (Mat_(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, 0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, 0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, 0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, 0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0097 : default_l1; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : default_lInf; normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff); expectNoFallbacksFromIE(net); } TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD) { checkBackend(); std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt"); std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("dnn/dog416.png")); Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(blob); Mat out = net.forward(); Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy")); float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 1.5e-5; float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3; float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3; #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) { scoreDiff = 0.061; iouDiff = 0.12; detectionConfThresh = 0.36; } #endif normAssertDetections(ref, out, "", detectionConfThresh, scoreDiff, iouDiff); expectNoFallbacksFromIE(net); } TEST_P(Test_TensorFlow_nets, Faster_RCNN) { // FIXIT split test applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); static std::string names[] = {"faster_rcnn_inception_v2_coco_2018_01_28", "faster_rcnn_resnet50_coco_2018_01_28"}; checkBackend(); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); double scoresDiff = backend == DNN_BACKEND_INFERENCE_ENGINE ? 2.9e-5 : 1e-5; for (int i = 0; i < 2; ++i) { std::string proto = findDataFile("dnn/" + names[i] + ".pbtxt"); std::string model = findDataFile("dnn/" + names[i] + ".pb", false); Net net = readNetFromTensorflow(model, proto); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat img = imread(findDataFile("dnn/dog416.png")); Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false); net.setInput(blob); Mat out = net.forward(); Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + names[i] + ".detection_out.npy")); normAssertDetections(ref, out, names[i].c_str(), 0.3, scoresDiff); } } TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif checkBackend(); std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt"); std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("dnn/dog416.png")); Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy")); Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(blob); Mat out = net.forward(); double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.048 : 1.1e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.058 : default_lInf; normAssertDetections(ref, out, "", 0.45, scoreDiff, iouDiff); expectNoFallbacksFromIE(net); } TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8) { checkBackend(); std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt"); std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("gpu/lbpcascade/er.png")); Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); // References are from test for Caffe model. Mat ref = (Mat_(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, 0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, 0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, 0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, 0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, 0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 3.4e-3; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.024 : 1e-2; normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff); expectNoFallbacksFromIE(net); } // inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png') // inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3) // outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'), // sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')], // feed_dict={'input_images:0': inp}) // scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2)) // geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2)) // np.save('east_text_detection.scores.npy', scores) // np.save('east_text_detection.geometry.npy', geometry) TEST_P(Test_TensorFlow_nets, EAST_text_detection) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), CV_TEST_TAG_DEBUG_LONG ); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_EQ(2019020000)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_2019R2); #endif checkBackend(); std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false); std::string imgPath = findDataFile("cv/ximgproc/sources/08.png"); std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy"); std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy"); Net net = readNet(netPath); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat img = imread(imgPath); Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false); net.setInput(inp); std::vector outs; std::vector outNames(2); outNames[0] = "feature_fusion/Conv_7/Sigmoid"; outNames[1] = "feature_fusion/concat_3"; net.forward(outs, outNames); Mat scores = outs[0]; Mat geometry = outs[1]; // Scores are in range [0, 1]. Geometry values are in range [-0.23, 290] double l1_scores = default_l1, lInf_scores = default_lInf; double l1_geometry = default_l1, lInf_geometry = default_lInf; if (target == DNN_TARGET_OPENCL_FP16) { lInf_scores = backend == DNN_BACKEND_INFERENCE_ENGINE ? 0.16 : 0.11; l1_geometry = 0.28; lInf_geometry = 5.94; } else if (target == DNN_TARGET_MYRIAD) { lInf_scores = 0.41; l1_geometry = 0.28; lInf_geometry = 5.94; } else { l1_geometry = 1e-4, lInf_geometry = 3e-3; } normAssert(scores, blobFromNPY(refScoresPath), "scores", l1_scores, lInf_scores); normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", l1_geometry, lInf_geometry); expectNoFallbacksFromIE(net); } INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets()); TEST_P(Test_TensorFlow_layers, fp16_weights) { float l1 = 0.00078; float lInf = 0.012; runTensorFlowNet("fp16_single_conv", false, l1, lInf); runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf); runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf); runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf); runTensorFlowNet("fp16_padding_valid", false, l1, lInf); // Reference output values are in range [0.0889, 1.651] runTensorFlowNet("fp16_max_pool_even", false, (target == DNN_TARGET_MYRIAD) ? 0.003 : l1, lInf); if (target == DNN_TARGET_MYRIAD) { l1 = 0.0041; lInf = 0.024; } // Reference output values are in range [0, 10.75] runTensorFlowNet("fp16_deconvolution", false, l1, lInf); // Reference output values are in range [0.418, 2.297] runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf); } TEST_P(Test_TensorFlow_layers, fp16_padding_same) { // Reference output values are in range [-3.504, -0.002] runTensorFlowNet("fp16_padding_same", false, 7e-4, 4e-3); } TEST_P(Test_TensorFlow_layers, defun) { runTensorFlowNet("defun_dropout"); } TEST_P(Test_TensorFlow_layers, quantized) { runTensorFlowNet("uint8_single_conv"); } TEST_P(Test_TensorFlow_layers, lstm) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); runTensorFlowNet("lstm", true); runTensorFlowNet("lstm", true, 0.0, 0.0, true); } TEST_P(Test_TensorFlow_layers, split) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); runTensorFlowNet("split"); if (backend == DNN_BACKEND_INFERENCE_ENGINE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("split_equals"); } TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor) { runTensorFlowNet("resize_nearest_neighbor"); runTensorFlowNet("keras_upsampling2d"); } TEST_P(Test_TensorFlow_layers, slice) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); runTensorFlowNet("slice_4d"); runTensorFlowNet("strided_slice"); } TEST_P(Test_TensorFlow_layers, softmax) { runTensorFlowNet("keras_softmax"); runTensorFlowNet("slim_softmax"); } TEST_P(Test_TensorFlow_layers, slim_softmax_v2) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); #endif runTensorFlowNet("slim_softmax_v2"); } TEST_P(Test_TensorFlow_layers, relu6) { runTensorFlowNet("keras_relu6"); runTensorFlowNet("keras_relu6", /*hasText*/ true); } TEST_P(Test_TensorFlow_layers, subpixel) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("subpixel"); } TEST_P(Test_TensorFlow_layers, keras_mobilenet_head) { runTensorFlowNet("keras_mobilenet_head"); runTensorFlowNet("keras_learning_phase"); } TEST_P(Test_TensorFlow_layers, resize_bilinear) { runTensorFlowNet("resize_bilinear"); runTensorFlowNet("resize_bilinear_factor"); } TEST_P(Test_TensorFlow_layers, squeeze) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); #endif int inpShapes[][4] = {{1, 3, 4, 2}, {1, 3, 1, 2}, {1, 3, 4, 1}, {1, 3, 4, 1}}; // TensorFlow's shape (NHWC) int outShapes[][3] = {{3, 4, 2}, {1, 3, 2}, {1, 3, 4}, {1, 3, 4}}; int squeeze_dims[] = {0, 2, 3, -1}; for (int i = 0; i < 4; ++i) { SCOPED_TRACE(format("i=%d", i)); std::string pbtxt = "node { name: \"input\" op: \"Placeholder\"" "attr { key: \"data_format\" value { s: \"NHWC\" } } }" "node { name: \"squeeze\" op: \"Squeeze\" input: \"input\"" "attr { key: \"squeeze_dims\" value { list { i:" + format("%d", squeeze_dims[i]) + "}}}}"; Net net = readNetFromTensorflow(0, 0, pbtxt.c_str(), pbtxt.size()); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat tfInp(4, &inpShapes[i][0], CV_32F); randu(tfInp, -1, 1); // NHWC to NCHW CV_Assert(inpShapes[i][0] == 1); std::swap(inpShapes[i][2], inpShapes[i][3]); std::swap(inpShapes[i][1], inpShapes[i][2]); Mat cvInp = tfInp.reshape(1, tfInp.total() / inpShapes[i][1]).t(); cvInp = cvInp.reshape(1, 4, &inpShapes[i][0]); net.setInput(cvInp); Mat out = net.forward(); normAssert(tfInp.reshape(1, 3, &outShapes[i][0]), out, "", default_l1, default_lInf); } } INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, dnnBackendsAndTargets()); TEST(Test_TensorFlow, two_inputs) { Net net = readNet(path("two_inputs_net.pbtxt")); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1); randu(firstInput, -1, 1); randu(secondInput, -1, 1); net.setInput(firstInput, "first_input"); net.setInput(secondInput, "second_input"); Mat out = net.forward(); normAssert(out, firstInput + secondInput); } TEST(Test_TensorFlow, Mask_RCNN) { applyTestTag(CV_TEST_TAG_MEMORY_1GB, CV_TEST_TAG_DEBUG_VERYLONG); Mat img = imread(findDataFile("dnn/street.png")); std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt"); std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false); Net net = readNetFromTensorflow(model, proto); Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy")); Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy")); Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setInput(blob); // Mask-RCNN predicts bounding boxes and segmentation masks. std::vector outNames(2); outNames[0] = "detection_out_final"; outNames[1] = "detection_masks"; std::vector outs; net.forward(outs, outNames); Mat outDetections = outs[0]; Mat outMasks = outs[1]; normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5); // Output size of masks is NxCxHxW where // N - number of detected boxes // C - number of classes (excluding background) // HxW - segmentation shape const int numDetections = outDetections.size[2]; int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]}; Mat masks(4, &masksSize[0], CV_32F); std::vector srcRanges(4, cv::Range::all()); std::vector dstRanges(4, cv::Range::all()); outDetections = outDetections.reshape(1, outDetections.total() / 7); for (int i = 0; i < numDetections; ++i) { // Get a class id for this bounding box and copy mask only for that class. int classId = static_cast(outDetections.at(i, 1)); srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1); srcRanges[1] = cv::Range(classId, classId + 1); outMasks(srcRanges).copyTo(masks(dstRanges)); } cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()}; normAssert(masks, refMasks(&topRefMasks[0])); } }