/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core/hal/intrin.hpp" namespace cv { namespace dnn { CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN void fastConv( const float* weights, size_t wstep, const float* bias, const float* rowbuf, float* output, const int* outShape, int blockSize, int vecsize, int vecsize_aligned, const float* relu, bool initOutput ); void fastGEMM1T( const float* vec, const float* weights, size_t wstep, const float* bias, float* dst, int nvecs, int vecsize ); void fastGEMM( const float* aptr, size_t astep, const float* bptr, size_t bstep, float* cptr, size_t cstep, int ma, int na, int nb ); #if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_AVX #if !CV_FMA3 // AVX workaround #undef _mm256_fmadd_ps #define _mm256_fmadd_ps(a, b, c) _mm256_add_ps(c, _mm256_mul_ps(a, b)) #endif void fastConv( const float* weights, size_t wstep, const float* bias, const float* rowbuf, float* output, const int* outShape, int blockSize, int vecsize, int vecsize_aligned, const float* relu, bool initOutput ) { int outCn = outShape[1]; size_t outPlaneSize = outShape[2]*outShape[3]; float r0 = 1.f, r1 = 1.f, r2 = 1.f; __m128 vr0 = _mm_set1_ps(1.f), vr1 = vr0, vr2 = vr0, z = _mm_setzero_ps(); // now compute dot product of the weights // and im2row-transformed part of the tensor for( int i = 0; i < outCn; i += 3 ) { const float* wptr0 = weights + i*wstep; const float* wptr1 = wptr0 + wstep; const float* wptr2 = wptr1 + wstep; float* outptr0 = output + i*outPlaneSize; float* outptr1 = outptr0 + outPlaneSize; float* outptr2 = outptr1 + outPlaneSize; float bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2]; if( i+2 >= outCn ) { wptr2 = wptr1; outptr2 = outptr1; bias2 = bias1; if( i+1 >= outCn ) { wptr2 = wptr1 = wptr0; outptr2 = outptr1 = outptr0; bias2 = bias1 = bias0; } } if( relu ) { r0 = relu[i]; r1 = relu[i+1]; r2 = relu[i+2]; vr0 = _mm_set1_ps(r0); vr1 = _mm_set1_ps(r1); vr2 = _mm_set1_ps(r2); } int j = 0; for( ; j <= blockSize - 4; j += 4 ) { const float* rptr = rowbuf + j*vecsize_aligned; __m256 vs00 = _mm256_setzero_ps(), vs01 = _mm256_setzero_ps(), vs02 = _mm256_setzero_ps(), vs03 = _mm256_setzero_ps(), vs10 = _mm256_setzero_ps(), vs11 = _mm256_setzero_ps(), vs12 = _mm256_setzero_ps(), vs13 = _mm256_setzero_ps(), vs20 = _mm256_setzero_ps(), vs21 = _mm256_setzero_ps(), vs22 = _mm256_setzero_ps(), vs23 = _mm256_setzero_ps(); for( int k = 0; k < vecsize; k += 8, rptr += 8 ) { __m256 w0 = _mm256_load_ps(wptr0 + k); __m256 w1 = _mm256_load_ps(wptr1 + k); __m256 w2 = _mm256_load_ps(wptr2 + k); __m256 r0 = _mm256_load_ps(rptr); vs00 = _mm256_fmadd_ps(w0, r0, vs00); vs10 = _mm256_fmadd_ps(w1, r0, vs10); vs20 = _mm256_fmadd_ps(w2, r0, vs20); r0 = _mm256_load_ps(rptr + vecsize_aligned); vs01 = _mm256_fmadd_ps(w0, r0, vs01); vs11 = _mm256_fmadd_ps(w1, r0, vs11); vs21 = _mm256_fmadd_ps(w2, r0, vs21); r0 = _mm256_load_ps(rptr + vecsize_aligned*2); vs02 = _mm256_fmadd_ps(w0, r0, vs02); vs12 = _mm256_fmadd_ps(w1, r0, vs12); vs22 = _mm256_fmadd_ps(w2, r0, vs22); r0 = _mm256_load_ps(rptr + vecsize_aligned*3); vs03 = _mm256_fmadd_ps(w0, r0, vs03); vs13 = _mm256_fmadd_ps(w1, r0, vs13); vs23 = _mm256_fmadd_ps(w2, r0, vs23); } __m256 t0 = _mm256_hadd_ps(_mm256_hadd_ps(vs00, vs01), _mm256_hadd_ps(vs02, vs03)); __m256 t1 = _mm256_hadd_ps(_mm256_hadd_ps(vs10, vs11), _mm256_hadd_ps(vs12, vs13)); __m256 t2 = _mm256_hadd_ps(_mm256_hadd_ps(vs20, vs21), _mm256_hadd_ps(vs22, vs23)); t0 = _mm256_add_ps(t0, _mm256_permute2f128_ps(t0, t0, 1)); t1 = _mm256_add_ps(t1, _mm256_permute2f128_ps(t1, t1, 1)); t2 = _mm256_add_ps(t2, _mm256_permute2f128_ps(t2, t2, 1)); __m128 s0, s1, s2; if( initOutput ) { s0 = _mm_set1_ps(bias0); s1 = _mm_set1_ps(bias1); s2 = _mm_set1_ps(bias2); } else { s0 = _mm_loadu_ps(outptr0 + j); s1 = _mm_loadu_ps(outptr1 + j); s2 = _mm_loadu_ps(outptr2 + j); } s0 = _mm_add_ps(s0, _mm256_castps256_ps128(t0)); s1 = _mm_add_ps(s1, _mm256_castps256_ps128(t1)); s2 = _mm_add_ps(s2, _mm256_castps256_ps128(t2)); if( relu ) { __m128 m0 = _mm_cmp_ps(s0, z, _CMP_GT_OS); __m128 m1 = _mm_cmp_ps(s1, z, _CMP_GT_OS); __m128 m2 = _mm_cmp_ps(s2, z, _CMP_GT_OS); s0 = _mm_xor_ps(s0, _mm_andnot_ps(m0, _mm_xor_ps(_mm_mul_ps(s0, vr0), s0))); s1 = _mm_xor_ps(s1, _mm_andnot_ps(m1, _mm_xor_ps(_mm_mul_ps(s1, vr1), s1))); s2 = _mm_xor_ps(s2, _mm_andnot_ps(m2, _mm_xor_ps(_mm_mul_ps(s2, vr2), s2))); } _mm_storeu_ps(outptr0 + j, s0); _mm_storeu_ps(outptr1 + j, s1); _mm_storeu_ps(outptr2 + j, s2); } for( ; j < blockSize; j++ ) { const float* rptr = rowbuf + j*vecsize_aligned; float s00, s10, s20; if( initOutput ) { s00 = bias0; s10 = bias1; s20 = bias2; } else { s00 = outptr0[j]; s10 = outptr1[j]; s20 = outptr2[j]; } for( int k = 0; k < vecsize; k++ ) { float r0 = rptr[k]; s00 += wptr0[k]*r0; s10 += wptr1[k]*r0; s20 += wptr2[k]*r0; } if( relu ) { s00 = s00 > 0.f ? s00 : s00*r0; s10 = s10 > 0.f ? s10 : s10*r1; s20 = s20 > 0.f ? s20 : s20*r2; } outptr0[j] = s00; outptr1[j] = s10; outptr2[j] = s20; } } _mm256_zeroupper(); } // dst = vec * weights^t + bias void fastGEMM1T( const float* vec, const float* weights, size_t wstep, const float* bias, float* dst, int nvecs, int vecsize ) { int i = 0; for( ; i <= nvecs - 8; i += 8 ) { const float* wptr = weights + i*wstep; __m256 vs0 = _mm256_setzero_ps(), vs1 = _mm256_setzero_ps(), vs2 = _mm256_setzero_ps(), vs3 = _mm256_setzero_ps(), vs4 = _mm256_setzero_ps(), vs5 = _mm256_setzero_ps(), vs6 = _mm256_setzero_ps(), vs7 = _mm256_setzero_ps(); for( int k = 0; k < vecsize; k += 8, wptr += 8 ) { __m256 v = _mm256_load_ps(vec + k); vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0); vs1 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep), v, vs1); vs2 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*2), v, vs2); vs3 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*3), v, vs3); vs4 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*4), v, vs4); vs5 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*5), v, vs5); vs6 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*6), v, vs6); vs7 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*7), v, vs7); } __m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs1), _mm256_hadd_ps(vs2, vs3)); __m256 s1 = _mm256_hadd_ps(_mm256_hadd_ps(vs4, vs5), _mm256_hadd_ps(vs6, vs7)); s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1)); s1 = _mm256_add_ps(s1, _mm256_permute2f128_ps(s1, s1, 1)); s0 = _mm256_add_ps(s0, _mm256_castps128_ps256(_mm_loadu_ps(bias + i))); s1 = _mm256_add_ps(s1, _mm256_castps128_ps256(_mm_loadu_ps(bias + i + 4))); _mm_storeu_ps(dst + i, _mm256_castps256_ps128(s0)); _mm_storeu_ps(dst + i + 4, _mm256_castps256_ps128(s1)); } float temp = 0.f; for( ; i < nvecs; i++ ) { const float* wptr = weights + i*wstep; __m256 vs0 = _mm256_setzero_ps(); for( int k = 0; k < vecsize; k += 8, wptr += 8 ) { __m256 v = _mm256_load_ps(vec + k); vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0); } __m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs0), vs0); s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1)); _mm_store_ss(&temp, _mm256_castps256_ps128(s0)); dst[i] = temp + bias[i]; } _mm256_zeroupper(); } void fastGEMM( const float* aptr, size_t astep, const float* bptr, size_t bstep, float* cptr, size_t cstep, int ma, int na, int nb ) { int n = 0; #if CV_AVX_512F for( ; n <= nb - 32; n += 32 ) { for( int m = 0; m < ma; m += 4 ) { const float* aptr0 = aptr + astep*m; const float* aptr1 = aptr + astep*std::min(m+1, ma-1); const float* aptr2 = aptr + astep*std::min(m+2, ma-1); const float* aptr3 = aptr + astep*std::min(m+3, ma-1); float* cptr0 = cptr + cstep*m; float* cptr1 = cptr + cstep*std::min(m+1, ma-1); float* cptr2 = cptr + cstep*std::min(m+2, ma-1); float* cptr3 = cptr + cstep*std::min(m+3, ma-1); __m512 d00 = _mm512_setzero_ps(), d01 = _mm512_setzero_ps(); __m512 d10 = _mm512_setzero_ps(), d11 = _mm512_setzero_ps(); __m512 d20 = _mm512_setzero_ps(), d21 = _mm512_setzero_ps(); __m512 d30 = _mm512_setzero_ps(), d31 = _mm512_setzero_ps(); for( int k = 0; k < na; k++ ) { __m512 a0 = _mm512_set1_ps(aptr0[k]); __m512 a1 = _mm512_set1_ps(aptr1[k]); __m512 a2 = _mm512_set1_ps(aptr2[k]); __m512 a3 = _mm512_set1_ps(aptr3[k]); __m512 b0 = _mm512_loadu_ps(bptr + k*bstep + n); __m512 b1 = _mm512_loadu_ps(bptr + k*bstep + n + 16); d00 = _mm512_fmadd_ps(a0, b0, d00); d01 = _mm512_fmadd_ps(a0, b1, d01); d10 = _mm512_fmadd_ps(a1, b0, d10); d11 = _mm512_fmadd_ps(a1, b1, d11); d20 = _mm512_fmadd_ps(a2, b0, d20); d21 = _mm512_fmadd_ps(a2, b1, d21); d30 = _mm512_fmadd_ps(a3, b0, d30); d31 = _mm512_fmadd_ps(a3, b1, d31); } _mm512_storeu_ps(cptr0 + n, d00); _mm512_storeu_ps(cptr0 + n + 16, d01); _mm512_storeu_ps(cptr1 + n, d10); _mm512_storeu_ps(cptr1 + n + 16, d11); _mm512_storeu_ps(cptr2 + n, d20); _mm512_storeu_ps(cptr2 + n + 16, d21); _mm512_storeu_ps(cptr3 + n, d30); _mm512_storeu_ps(cptr3 + n + 16, d31); } } #endif for( ; n <= nb - 16; n += 16 ) { for( int m = 0; m < ma; m += 4 ) { const float* aptr0 = aptr + astep*m; const float* aptr1 = aptr + astep*std::min(m+1, ma-1); const float* aptr2 = aptr + astep*std::min(m+2, ma-1); const float* aptr3 = aptr + astep*std::min(m+3, ma-1); float* cptr0 = cptr + cstep*m; float* cptr1 = cptr + cstep*std::min(m+1, ma-1); float* cptr2 = cptr + cstep*std::min(m+2, ma-1); float* cptr3 = cptr + cstep*std::min(m+3, ma-1); __m256 d00 = _mm256_setzero_ps(), d01 = _mm256_setzero_ps(); __m256 d10 = _mm256_setzero_ps(), d11 = _mm256_setzero_ps(); __m256 d20 = _mm256_setzero_ps(), d21 = _mm256_setzero_ps(); __m256 d30 = _mm256_setzero_ps(), d31 = _mm256_setzero_ps(); for( int k = 0; k < na; k++ ) { __m256 a0 = _mm256_set1_ps(aptr0[k]); __m256 a1 = _mm256_set1_ps(aptr1[k]); __m256 a2 = _mm256_set1_ps(aptr2[k]); __m256 a3 = _mm256_set1_ps(aptr3[k]); __m256 b0 = _mm256_loadu_ps(bptr + k*bstep + n); __m256 b1 = _mm256_loadu_ps(bptr + k*bstep + n + 8); d00 = _mm256_fmadd_ps(a0, b0, d00); d01 = _mm256_fmadd_ps(a0, b1, d01); d10 = _mm256_fmadd_ps(a1, b0, d10); d11 = _mm256_fmadd_ps(a1, b1, d11); d20 = _mm256_fmadd_ps(a2, b0, d20); d21 = _mm256_fmadd_ps(a2, b1, d21); d30 = _mm256_fmadd_ps(a3, b0, d30); d31 = _mm256_fmadd_ps(a3, b1, d31); } _mm256_storeu_ps(cptr0 + n, d00); _mm256_storeu_ps(cptr0 + n + 8, d01); _mm256_storeu_ps(cptr1 + n, d10); _mm256_storeu_ps(cptr1 + n + 8, d11); _mm256_storeu_ps(cptr2 + n, d20); _mm256_storeu_ps(cptr2 + n + 8, d21); _mm256_storeu_ps(cptr3 + n, d30); _mm256_storeu_ps(cptr3 + n + 8, d31); } } for( ; n < nb; n++ ) { for( int m = 0; m < ma; m++ ) { const float* aptr0 = aptr + astep*m; float* cptr0 = cptr + cstep*m; float d0 = 0.f; for( int k = 0; k < na; k++ ) d0 += aptr0[k]*bptr[k*bstep + n]; cptr0[n] = d0; } } _mm256_zeroupper(); } #endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY CV_CPU_OPTIMIZATION_NAMESPACE_END }} // namespace