/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "internal_shared.hpp" #include "opencv2/gpu/device/saturate_cast.hpp" #include "opencv2/gpu/device/limits.hpp" using namespace cv::gpu; using namespace cv::gpu::device; namespace cv { namespace gpu { namespace bp { /////////////////////////////////////////////////////////////// /////////////////////// load constants //////////////////////// /////////////////////////////////////////////////////////////// __constant__ int cndisp; __constant__ float cmax_data_term; __constant__ float cdata_weight; __constant__ float cmax_disc_term; __constant__ float cdisc_single_jump; void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump) { cudaSafeCall( cudaMemcpyToSymbol(cndisp, &ndisp, sizeof(int )) ); cudaSafeCall( cudaMemcpyToSymbol(cmax_data_term, &max_data_term, sizeof(float)) ); cudaSafeCall( cudaMemcpyToSymbol(cdata_weight, &data_weight, sizeof(float)) ); cudaSafeCall( cudaMemcpyToSymbol(cmax_disc_term, &max_disc_term, sizeof(float)) ); cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) ); } /////////////////////////////////////////////////////////////// ////////////////////////// comp data ////////////////////////// /////////////////////////////////////////////////////////////// template struct PixDiff; template <> struct PixDiff<1> { __device__ __forceinline__ PixDiff(const uchar* ls) { l = *ls; } __device__ __forceinline__ float operator()(const uchar* rs) const { return abs((int)l - *rs); } uchar l; }; template <> struct PixDiff<3> { __device__ __forceinline__ PixDiff(const uchar* ls) { l = *((uchar3*)ls); } __device__ __forceinline__ float operator()(const uchar* rs) const { const float tr = 0.299f; const float tg = 0.587f; const float tb = 0.114f; float val = tb * abs((int)l.x - rs[0]); val += tg * abs((int)l.y - rs[1]); val += tr * abs((int)l.z - rs[2]); return val; } uchar3 l; }; template <> struct PixDiff<4> { __device__ __forceinline__ PixDiff(const uchar* ls) { l = *((uchar4*)ls); } __device__ __forceinline__ float operator()(const uchar* rs) const { const float tr = 0.299f; const float tg = 0.587f; const float tb = 0.114f; uchar4 r = *((uchar4*)rs); float val = tb * abs((int)l.x - r.x); val += tg * abs((int)l.y - r.y); val += tr * abs((int)l.z - r.z); return val; } uchar4 l; }; template __global__ void comp_data(const DevMem2Db left, const PtrStepb right, PtrElemStep_ data) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1) { const uchar* ls = left.ptr(y) + x * cn; const PixDiff pixDiff(ls); const uchar* rs = right.ptr(y) + x * cn; D* ds = data.ptr(y) + x; const size_t disp_step = data.step * left.rows; for (int disp = 0; disp < cndisp; disp++) { if (x - disp >= 1) { float val = pixDiff(rs - disp * cn); ds[disp * disp_step] = saturate_cast(fmin(cdata_weight * val, cdata_weight * cmax_data_term)); } else { ds[disp * disp_step] = saturate_cast(cdata_weight * cmax_data_term); } } } } template void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream); template <> void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<1, short><<>>(left, right, (DevMem2D_)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<1, float><<>>(left, right, (DevMem2D_)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<3, short><<>>(left, right, (DevMem2D_)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<3, float><<>>(left, right, (DevMem2D_)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<4, short><<>>(left, right, (DevMem2D_)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<4, float><<>>(left, right, (DevMem2D_)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } /////////////////////////////////////////////////////////////// //////////////////////// data step down /////////////////////// /////////////////////////////////////////////////////////////// template __global__ void data_step_down(int dst_cols, int dst_rows, int src_rows, const PtrStep src, PtrStep dst) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < dst_cols && y < dst_rows) { for (int d = 0; d < cndisp; ++d) { float dst_reg = src.ptr(d * src_rows + (2*y+0))[(2*x+0)]; dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+0)]; dst_reg += src.ptr(d * src_rows + (2*y+0))[(2*x+1)]; dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+1)]; dst.ptr(d * dst_rows + y)[x] = saturate_cast(dst_reg); } } } template void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(dst_cols, threads.x); grid.y = divUp(dst_rows, threads.y); data_step_down<<>>(dst_cols, dst_rows, src_rows, (DevMem2D_)src, (DevMem2D_)dst); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream); template void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream); /////////////////////////////////////////////////////////////// /////////////////// level up messages //////////////////////// /////////////////////////////////////////////////////////////// template __global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrElemStep_ src, PtrElemStep_ dst) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < dst_cols && y < dst_rows) { const size_t dst_disp_step = dst.step * dst_rows; const size_t src_disp_step = src.step * src_rows; T* dstr = dst.ptr(y ) + x; const T* srcr = src.ptr(y/2) + x/2; for (int d = 0; d < cndisp; ++d) dstr[d * dst_disp_step] = srcr[d * src_disp_step]; } } template void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(dst_cols, threads.x); grid.y = divUp(dst_rows, threads.y); int src_idx = (dst_idx + 1) & 1; level_up_message<<>>(dst_cols, dst_rows, src_rows, (DevMem2D_)mus[src_idx], (DevMem2D_)mus[dst_idx]); cudaSafeCall( cudaGetLastError() ); level_up_message<<>>(dst_cols, dst_rows, src_rows, (DevMem2D_)mds[src_idx], (DevMem2D_)mds[dst_idx]); cudaSafeCall( cudaGetLastError() ); level_up_message<<>>(dst_cols, dst_rows, src_rows, (DevMem2D_)mls[src_idx], (DevMem2D_)mls[dst_idx]); cudaSafeCall( cudaGetLastError() ); level_up_message<<>>(dst_cols, dst_rows, src_rows, (DevMem2D_)mrs[src_idx], (DevMem2D_)mrs[dst_idx]); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream); template void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream); /////////////////////////////////////////////////////////////// //////////////////// calc all iterations ///////////////////// /////////////////////////////////////////////////////////////// template __device__ void calc_min_linear_penalty(T* dst, size_t step) { float prev = dst[0]; float cur; for (int disp = 1; disp < cndisp; ++disp) { prev += cdisc_single_jump; cur = dst[step * disp]; if (prev < cur) { cur = prev; dst[step * disp] = saturate_cast(prev); } prev = cur; } prev = dst[(cndisp - 1) * step]; for (int disp = cndisp - 2; disp >= 0; disp--) { prev += cdisc_single_jump; cur = dst[step * disp]; if (prev < cur) { cur = prev; dst[step * disp] = saturate_cast(prev); } prev = cur; } } template __device__ void message(const T* msg1, const T* msg2, const T* msg3, const T* data, T* dst, size_t msg_disp_step, size_t data_disp_step) { float minimum = numeric_limits::max(); for(int i = 0; i < cndisp; ++i) { float dst_reg = msg1[msg_disp_step * i]; dst_reg += msg2[msg_disp_step * i]; dst_reg += msg3[msg_disp_step * i]; dst_reg += data[data_disp_step * i]; if (dst_reg < minimum) minimum = dst_reg; dst[msg_disp_step * i] = saturate_cast(dst_reg); } calc_min_linear_penalty(dst, msg_disp_step); minimum += cmax_disc_term; float sum = 0; for(int i = 0; i < cndisp; ++i) { float dst_reg = dst[msg_disp_step * i]; if (dst_reg > minimum) { dst_reg = minimum; dst[msg_disp_step * i] = saturate_cast(minimum); } sum += dst_reg; } sum /= cndisp; for(int i = 0; i < cndisp; ++i) dst[msg_disp_step * i] -= sum; } template __global__ void one_iteration(int t, PtrElemStep_ u, T* d, T* l, T* r, const PtrElemStep_ data, int cols, int rows) { const int y = blockIdx.y * blockDim.y + threadIdx.y; const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1); if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1)) { T* us = u.ptr(y) + x; T* ds = d + y * u.step + x; T* ls = l + y * u.step + x; T* rs = r + y * u.step + x; const T* dt = data.ptr(y) + x; size_t msg_disp_step = u.step * rows; size_t data_disp_step = data.step * rows; message(us + u.step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step); message(ds - u.step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step); message(us + u.step, ds - u.step, rs - 1, dt, rs, msg_disp_step, data_disp_step); message(us + u.step, ds - u.step, ls + 1, dt, ls, msg_disp_step, data_disp_step); } } template void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(cols, threads.x << 1); grid.y = divUp(rows, threads.y); for(int t = 0; t < iters; ++t) { one_iteration<<>>(t, (DevMem2D_)u, (T*)d.data, (T*)l.data, (T*)r.data, (DevMem2D_)data, cols, rows); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } template void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream); template void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream); /////////////////////////////////////////////////////////////// /////////////////////////// output //////////////////////////// /////////////////////////////////////////////////////////////// template __global__ void output(const PtrElemStep_ u, const T* d, const T* l, const T* r, const T* data, DevMem2D_ disp) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1) { const T* us = u.ptr(y + 1) + x; const T* ds = d + (y - 1) * u.step + x; const T* ls = l + y * u.step + (x + 1); const T* rs = r + y * u.step + (x - 1); const T* dt = data + y * u.step + x; size_t disp_step = disp.rows * u.step; int best = 0; float best_val = numeric_limits::max(); for (int d = 0; d < cndisp; ++d) { float val = us[d * disp_step]; val += ds[d * disp_step]; val += ls[d * disp_step]; val += rs[d * disp_step]; val += dt[d * disp_step]; if (val < best_val) { best_val = val; best = d; } } disp.ptr(y)[x] = saturate_cast(best); } } template void output_gpu(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_& disp, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(disp.cols, threads.x); grid.y = divUp(disp.rows, threads.y); output<<>>((DevMem2D_)u, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, disp); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void output_gpu(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_& disp, cudaStream_t stream); template void output_gpu(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_& disp, cudaStream_t stream); }}}