/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core/hal/interface.h" #include "opencv2/ts.hpp" #include "opencv2/ts/cuda_test.hpp" #include "test_precomp.hpp" namespace opencv_test { namespace { /****************************************************************************************\ * minEnclosingCircle Test 3 * \****************************************************************************************/ TEST(minEnclosingCircle, basic_test) { vector pts; pts.push_back(Point2f(0, 0)); pts.push_back(Point2f(10, 0)); pts.push_back(Point2f(5, 1)); const float EPS = 1.0e-3f; Point2f center; float radius; // pts[2] is within the circle with diameter pts[0] - pts[1]. // 2 // 0 1 // NB: The triangle is obtuse, so the only pts[0] and pts[1] are on the circle. minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 5, EPS); EXPECT_NEAR(center.y, 0, EPS); EXPECT_NEAR(5, radius, EPS); // pts[2] is on the circle with diameter pts[0] - pts[1]. // 2 // 0 1 pts[2] = Point2f(5, 5); minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 5, EPS); EXPECT_NEAR(center.y, 0, EPS); EXPECT_NEAR(5, radius, EPS); // pts[2] is outside the circle with diameter pts[0] - pts[1]. // 2 // // // 0 1 // NB: The triangle is acute, so all 3 points are on the circle. pts[2] = Point2f(5, 10); minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 5, EPS); EXPECT_NEAR(center.y, 3.75, EPS); EXPECT_NEAR(6.25f, radius, EPS); // The 3 points are colinear. pts[2] = Point2f(3, 0); minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 5, EPS); EXPECT_NEAR(center.y, 0, EPS); EXPECT_NEAR(5, radius, EPS); // 2 points are the same. pts[2] = pts[1]; minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 5, EPS); EXPECT_NEAR(center.y, 0, EPS); EXPECT_NEAR(5, radius, EPS); // 3 points are the same. pts[0] = pts[1]; minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 10, EPS); EXPECT_NEAR(center.y, 0, EPS); EXPECT_NEAR(0, radius, EPS); } TEST(Imgproc_minEnclosingCircle, regression_16051) { vector pts; pts.push_back(Point2f(85, 1415)); pts.push_back(Point2f(87, 1415)); pts.push_back(Point2f(89, 1414)); pts.push_back(Point2f(89, 1414)); pts.push_back(Point2f(87, 1412)); Point2f center; float radius; minEnclosingCircle(pts, center, radius); EXPECT_NEAR(center.x, 86.9f, 1e-3); EXPECT_NEAR(center.y, 1414.1f, 1e-3); EXPECT_NEAR(2.1024551f, radius, 1e-3); } PARAM_TEST_CASE(ConvexityDefects_regression_5908, bool, int) { public: int start_index; bool clockwise; Mat contour; virtual void SetUp() { clockwise = GET_PARAM(0); start_index = GET_PARAM(1); const int N = 11; const Point2i points[N] = { Point2i(154, 408), Point2i(45, 223), Point2i(115, 275), // inner Point2i(104, 166), Point2i(154, 256), // inner Point2i(169, 144), Point2i(185, 256), // inner Point2i(235, 170), Point2i(240, 320), // inner Point2i(330, 287), Point2i(224, 390) }; contour = Mat(N, 1, CV_32SC2); for (int i = 0; i < N; i++) { contour.at(i) = (!clockwise) // image and convexHull coordinate systems are different ? points[(start_index + i) % N] : points[N - 1 - ((start_index + i) % N)]; } } }; TEST_P(ConvexityDefects_regression_5908, simple) { std::vector hull; cv::convexHull(contour, hull, clockwise, false); std::vector result; cv::convexityDefects(contour, hull, result); EXPECT_EQ(4, (int)result.size()); } INSTANTIATE_TEST_CASE_P(Imgproc, ConvexityDefects_regression_5908, testing::Combine( testing::Bool(), testing::Values(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) )); TEST(Imgproc_FitLine, regression_15083) { int points2i_[] = { 432, 654, 370, 656, 390, 656, 410, 656, 348, 658 }; Mat points(5, 1, CV_32SC2, points2i_); Vec4f lineParam; fitLine(points, lineParam, DIST_L1, 0, 0.01, 0.01); EXPECT_GE(fabs(lineParam[0]), fabs(lineParam[1]) * 4) << lineParam; } TEST(Imgproc_FitLine, regression_4903) { float points2f_[] = { 1224.0, 576.0, 1234.0, 683.0, 1215.0, 471.0, 1184.0, 137.0, 1079.0, 377.0, 1239.0, 788.0, }; Mat points(6, 1, CV_32FC2, points2f_); Vec4f lineParam; fitLine(points, lineParam, DIST_WELSCH, 0, 0.01, 0.01); EXPECT_GE(fabs(lineParam[1]), fabs(lineParam[0]) * 4) << lineParam; } #if 0 #define DRAW(x) x #else #define DRAW(x) #endif // the Python test by @hannarud is converted to C++; see the issue #4539 TEST(Imgproc_ConvexityDefects, ordering_4539) { int contour[][2] = { {26, 9}, {25, 10}, {24, 10}, {23, 10}, {22, 10}, {21, 10}, {20, 11}, {19, 11}, {18, 11}, {17, 12}, {17, 13}, {18, 14}, {18, 15}, {18, 16}, {18, 17}, {19, 18}, {19, 19}, {20, 20}, {21, 21}, {21, 22}, {22, 23}, {22, 24}, {23, 25}, {23, 26}, {24, 27}, {25, 28}, {26, 29}, {27, 30}, {27, 31}, {28, 32}, {29, 32}, {30, 33}, {31, 34}, {30, 35}, {29, 35}, {30, 35}, {31, 34}, {32, 34}, {33, 34}, {34, 33}, {35, 32}, {35, 31}, {35, 30}, {36, 29}, {37, 28}, {37, 27}, {38, 26}, {39, 25}, {40, 24}, {40, 23}, {41, 22}, {42, 21}, {42, 20}, {42, 19}, {43, 18}, {43, 17}, {44, 16}, {45, 15}, {45, 14}, {46, 13}, {46, 12}, {45, 11}, {44, 11}, {43, 11}, {42, 10}, {41, 10}, {40, 9}, {39, 9}, {38, 9}, {37, 9}, {36, 9}, {35, 9}, {34, 9}, {33, 9}, {32, 9}, {31, 9}, {30, 9}, {29, 9}, {28, 9}, {27, 9} }; int npoints = (int)(sizeof(contour)/sizeof(contour[0][0])/2); Mat contour_(1, npoints, CV_32SC2, contour); vector hull; vector hull_ind; vector defects; // first, check the original contour as-is, without intermediate fillPoly/drawContours. convexHull(contour_, hull_ind, false, false); EXPECT_THROW( convexityDefects(contour_, hull_ind, defects), cv::Exception ); int scale = 20; contour_ *= (double)scale; Mat canvas_gray(Size(60*scale, 45*scale), CV_8U, Scalar::all(0)); const Point* ptptr = contour_.ptr(); fillPoly(canvas_gray, &ptptr, &npoints, 1, Scalar(255, 255, 255)); vector > contours; findContours(canvas_gray, contours, noArray(), RETR_LIST, CHAIN_APPROX_SIMPLE); convexHull(contours[0], hull_ind, false, false); // the original contour contains self-intersections, // therefore convexHull does not return a monotonous sequence of points // and therefore convexityDefects throws an exception EXPECT_THROW( convexityDefects(contours[0], hull_ind, defects), cv::Exception ); #if 1 // one way to eliminate the contour self-intersection in this particular case is to apply dilate(), // so that the self-repeating points are not self-repeating anymore dilate(canvas_gray, canvas_gray, Mat()); #else // another popular technique to eliminate such thin "hair" is to use morphological "close" operation, // which is erode() + dilate() erode(canvas_gray, canvas_gray, Mat()); dilate(canvas_gray, canvas_gray, Mat()); #endif // after the "fix", the newly retrieved contour should not have self-intersections, // and everything should work well findContours(canvas_gray, contours, noArray(), RETR_LIST, CHAIN_APPROX_SIMPLE); convexHull(contours[0], hull, false, true); convexHull(contours[0], hull_ind, false, false); DRAW(Mat canvas(Size(60*scale, 45*scale), CV_8UC3, Scalar::all(0)); drawContours(canvas, contours, -1, Scalar(255, 255, 255), -1)); size_t nhull = hull.size(); ASSERT_EQ( nhull, hull_ind.size() ); if( nhull > 2 ) { bool initial_lt = hull_ind[0] < hull_ind[1]; for( size_t i = 0; i < nhull; i++ ) { int ind = hull_ind[i]; Point pt = contours[0][ind]; ASSERT_EQ(pt, hull[i]); if( i > 0 ) { // check that the convex hull indices are monotone if( initial_lt ) { ASSERT_LT(hull_ind[i-1], hull_ind[i]); } else { ASSERT_GT(hull_ind[i-1], hull_ind[i]); } } DRAW(circle(canvas, pt, 7, Scalar(180, 0, 180), -1, LINE_AA); putText(canvas, format("%d (%d)", (int)i, ind), pt+Point(15, 0), FONT_HERSHEY_SIMPLEX, 0.4, Scalar(200, 0, 200), 1, LINE_AA)); //printf("%d. ind=%d, pt=(%d, %d)\n", (int)i, ind, pt.x, pt.y); } } convexityDefects(contours[0], hull_ind, defects); for(size_t i = 0; i < defects.size(); i++ ) { Vec4i d = defects[i]; //printf("defect %d. start=%d, end=%d, farthest=%d, depth=%d\n", (int)i, d[0], d[1], d[2], d[3]); EXPECT_LT(d[0], d[1]); EXPECT_LE(d[0], d[2]); EXPECT_LE(d[2], d[1]); DRAW(Point start = contours[0][d[0]]; Point end = contours[0][d[1]]; Point far = contours[0][d[2]]; line(canvas, start, end, Scalar(255, 255, 128), 3, LINE_AA); line(canvas, start, far, Scalar(255, 150, 255), 3, LINE_AA); line(canvas, end, far, Scalar(255, 150, 255), 3, LINE_AA); circle(canvas, start, 7, Scalar(0, 0, 255), -1, LINE_AA); circle(canvas, end, 7, Scalar(0, 0, 255), -1, LINE_AA); circle(canvas, far, 7, Scalar(255, 0, 0), -1, LINE_AA)); } DRAW(imshow("defects", canvas); waitKey()); } #undef DRAW TEST(Imgproc_ConvexHull, overflow) { std::vector points; std::vector pointsf; points.push_back(Point(14763, 2890)); points.push_back(Point(14388, 72088)); points.push_back(Point(62810, 72274)); points.push_back(Point(63166, 3945)); points.push_back(Point(56782, 3945)); points.push_back(Point(56763, 3077)); points.push_back(Point(34666, 2965)); points.push_back(Point(34547, 2953)); points.push_back(Point(34508, 2866)); points.push_back(Point(34429, 2965)); size_t i, n = points.size(); for( i = 0; i < n; i++ ) pointsf.push_back(Point2f(points[i])); std::vector hull; std::vector hullf; convexHull(points, hull, false, false); convexHull(pointsf, hullf, false, false); ASSERT_EQ(hull, hullf); } static bool checkMinAreaRect(const RotatedRect& rr, const Mat& c, double eps = 0.5f) { int N = c.rows; Mat rr_pts; boxPoints(rr, rr_pts); double maxError = 0.0; int nfailed = 0; for (int i = 0; i < N; i++) { double d = pointPolygonTest(rr_pts, c.at(i), true); maxError = std::max(-d, maxError); if (d < -eps) nfailed++; } if (nfailed) std::cout << "nfailed=" << nfailed << " (total=" << N << ") maxError=" << maxError << std::endl; return nfailed == 0; } TEST(Imgproc_minAreaRect, reproducer_18157) { const int N = 168; float pts_[N][2] = { { 1903, 266 }, { 1897, 267 }, { 1893, 268 }, { 1890, 269 }, { 1878, 275 }, { 1875, 277 }, { 1872, 279 }, { 1868, 282 }, { 1862, 287 }, { 1750, 400 }, { 1748, 402 }, { 1742, 407 }, { 1742, 408 }, { 1740, 410 }, { 1738, 412 }, { 1593, 558 }, { 1590, 560 }, { 1588, 562 }, { 1586, 564 }, { 1580, 570 }, { 1443, 709 }, { 1437, 714 }, { 1435, 716 }, { 1304, 848 }, { 1302, 850 }, { 1292, 860 }, { 1175, 979 }, { 1172, 981 }, { 1049, 1105 }, { 936, 1220 }, { 933, 1222 }, { 931, 1224 }, { 830, 1326 }, { 774, 1383 }, { 769, 1389 }, { 766, 1393 }, { 764, 1396 }, { 762, 1399 }, { 760, 1402 }, { 757, 1408 }, { 757, 1410 }, { 755, 1413 }, { 754, 1416 }, { 753, 1420 }, { 752, 1424 }, { 752, 1442 }, { 753, 1447 }, { 754, 1451 }, { 755, 1454 }, { 757, 1457 }, { 757, 1459 }, { 761, 1467 }, { 763, 1470 }, { 765, 1473 }, { 767, 1476 }, { 771, 1481 }, { 779, 1490 }, { 798, 1510 }, { 843, 1556 }, { 847, 1560 }, { 851, 1564 }, { 863, 1575 }, { 907, 1620 }, { 909, 1622 }, { 913, 1626 }, { 1154, 1866 }, { 1156, 1868 }, { 1158, 1870 }, { 1207, 1918 }, { 1238, 1948 }, { 1252, 1961 }, { 1260, 1968 }, { 1264, 1971 }, { 1268, 1974 }, { 1271, 1975 }, { 1273, 1977 }, { 1283, 1982 }, { 1286, 1983 }, { 1289, 1984 }, { 1294, 1985 }, { 1300, 1986 }, { 1310, 1986 }, { 1316, 1985 }, { 1320, 1984 }, { 1323, 1983 }, { 1326, 1982 }, { 1338, 1976 }, { 1341, 1974 }, { 1344, 1972 }, { 1349, 1968 }, { 1358, 1960 }, { 1406, 1911 }, { 1421, 1897 }, { 1624, 1693 }, { 1788, 1528 }, { 1790, 1526 }, { 1792, 1524 }, { 1794, 1522 }, { 1796, 1520 }, { 1798, 1518 }, { 1800, 1516 }, { 1919, 1396 }, { 1921, 1394 }, { 2038, 1275 }, { 2047, 1267 }, { 2048, 1265 }, { 2145, 1168 }, { 2148, 1165 }, { 2260, 1052 }, { 2359, 952 }, { 2434, 876 }, { 2446, 863 }, { 2450, 858 }, { 2453, 854 }, { 2455, 851 }, { 2457, 846 }, { 2459, 844 }, { 2460, 842 }, { 2460, 840 }, { 2462, 837 }, { 2463, 834 }, { 2464, 830 }, { 2465, 825 }, { 2465, 809 }, { 2464, 804 }, { 2463, 800 }, { 2462, 797 }, { 2461, 794 }, { 2456, 784 }, { 2454, 781 }, { 2452, 778 }, { 2450, 775 }, { 2446, 770 }, { 2437, 760 }, { 2412, 734 }, { 2410, 732 }, { 2408, 730 }, { 2382, 704 }, { 2380, 702 }, { 2378, 700 }, { 2376, 698 }, { 2372, 694 }, { 2370, 692 }, { 2368, 690 }, { 2366, 688 }, { 2362, 684 }, { 2360, 682 }, { 2252, 576 }, { 2250, 573 }, { 2168, 492 }, { 2166, 490 }, { 2085, 410 }, { 2026, 352 }, { 1988, 315 }, { 1968, 296 }, { 1958, 287 }, { 1953, 283 }, { 1949, 280 }, { 1946, 278 }, { 1943, 276 }, { 1940, 274 }, { 1936, 272 }, { 1934, 272 }, { 1931, 270 }, { 1928, 269 }, { 1925, 268 }, { 1921, 267 }, { 1915, 266 } }; Mat contour(N, 1, CV_32FC2, (void*)pts_); RotatedRect rr = cv::minAreaRect(contour); EXPECT_TRUE(checkMinAreaRect(rr, contour)) << rr.center << " " << rr.size << " " << rr.angle; } TEST(Imgproc_minAreaRect, reproducer_19769_lightweight) { const int N = 23; float pts_[N][2] = { {1325, 732}, {1248, 808}, {582, 1510}, {586, 1524}, {595, 1541}, {599, 1547}, {789, 1745}, {829, 1786}, {997, 1958}, {1116, 2074}, {1207, 2066}, {1216, 2058}, {1231, 2044}, {1265, 2011}, {2036, 1254}, {2100, 1191}, {2169, 1123}, {2315, 979}, {2395, 900}, {2438, 787}, {2434, 782}, {2416, 762}, {2266, 610} }; Mat contour(N, 1, CV_32FC2, (void*)pts_); RotatedRect rr = cv::minAreaRect(contour); EXPECT_TRUE(checkMinAreaRect(rr, contour)) << rr.center << " " << rr.size << " " << rr.angle; } TEST(Imgproc_minAreaRect, reproducer_19769) { const int N = 169; float pts_[N][2] = { {1854, 227}, {1850, 228}, {1847, 229}, {1835, 235}, {1832, 237}, {1829, 239}, {1825, 242}, {1818, 248}, {1807, 258}, {1759, 306}, {1712, 351}, {1708, 356}, {1658, 404}, {1655, 408}, {1602, 459}, {1599, 463}, {1542, 518}, {1477, 582}, {1402, 656}, {1325, 732}, {1248, 808}, {1161, 894}, {1157, 898}, {1155, 900}, {1068, 986}, {1060, 995}, {1058, 997}, {957, 1097}, {956, 1097}, {814, 1238}, {810, 1242}, {805, 1248}, {610, 1442}, {603, 1450}, {599, 1455}, {596, 1459}, {594, 1462}, {592, 1465}, {590, 1470}, {588, 1472}, {586, 1476}, {586, 1478}, {584, 1481}, {583, 1485}, {582, 1490}, {582, 1510}, {583, 1515}, {584, 1518}, {585, 1521}, {586, 1524}, {593, 1538}, {595, 1541}, {597, 1544}, {599, 1547}, {603, 1552}, {609, 1559}, {623, 1574}, {645, 1597}, {677, 1630}, {713, 1667}, {753, 1707}, {789, 1744}, {789, 1745}, {829, 1786}, {871, 1828}, {909, 1867}, {909, 1868}, {950, 1910}, {953, 1912}, {997, 1958}, {1047, 2009}, {1094, 2056}, {1105, 2066}, {1110, 2070}, {1113, 2072}, {1116, 2074}, {1119, 2076}, {1122, 2077}, {1124, 2079}, {1130, 2082}, {1133, 2083}, {1136, 2084}, {1139, 2085}, {1142, 2086}, {1148, 2087}, {1166, 2087}, {1170, 2086}, {1174, 2085}, {1177, 2084}, {1180, 2083}, {1188, 2079}, {1190, 2077}, {1193, 2076}, {1196, 2074}, {1199, 2072}, {1202, 2070}, {1207, 2066}, {1216, 2058}, {1231, 2044}, {1265, 2011}, {1314, 1962}, {1360, 1917}, {1361, 1917}, {1408, 1871}, {1457, 1822}, {1508, 1773}, {1512, 1768}, {1560, 1722}, {1617, 1665}, {1671, 1613}, {1730, 1554}, {1784, 1502}, {1786, 1500}, {1787, 1498}, {1846, 1440}, {1850, 1437}, {1908, 1380}, {1974, 1314}, {2034, 1256}, {2036, 1254}, {2100, 1191}, {2169, 1123}, {2242, 1051}, {2315, 979}, {2395, 900}, {2426, 869}, {2435, 859}, {2438, 855}, {2440, 852}, {2442, 849}, {2443, 846}, {2445, 844}, {2446, 842}, {2446, 840}, {2448, 837}, {2449, 834}, {2450, 829}, {2450, 814}, {2449, 809}, {2448, 806}, {2447, 803}, {2442, 793}, {2440, 790}, {2438, 787}, {2434, 782}, {2428, 775}, {2416, 762}, {2411, 758}, {2342, 688}, {2340, 686}, {2338, 684}, {2266, 610}, {2260, 605}, {2170, 513}, {2075, 417}, {2073, 415}, {2069, 412}, {1955, 297}, {1955, 296}, {1913, 254}, {1904, 246}, {1897, 240}, {1894, 238}, {1891, 236}, {1888, 234}, {1880, 230}, {1877, 229}, {1874, 228}, {1870, 227} }; Mat contour(N, 1, CV_32FC2, (void*)pts_); RotatedRect rr = cv::minAreaRect(contour); EXPECT_TRUE(checkMinAreaRect(rr, contour)) << rr.center << " " << rr.size << " " << rr.angle; } TEST(Imgproc_minEnclosingTriangle, regression_17585) { const int N = 3; float pts_[N][2] = { {0, 0}, {0, 1}, {1, 1} }; cv::Mat points(N, 2, CV_32FC1, static_cast(pts_)); vector triangle; EXPECT_NO_THROW(minEnclosingTriangle(points, triangle)); } TEST(Imgproc_minEnclosingTriangle, regression_20890) { vector points; points.push_back(Point(0, 0)); points.push_back(Point(0, 1)); points.push_back(Point(1, 1)); vector triangle; EXPECT_NO_THROW(minEnclosingTriangle(points, triangle)); } TEST(Imgproc_minEnclosingTriangle, regression_mat_with_diff_channels) { const int N = 3; float pts_[N][2] = { {0, 0}, {0, 1}, {1, 1} }; cv::Mat points1xN(1, N, CV_32FC2, static_cast(pts_)); cv::Mat pointsNx1(N, 1, CV_32FC2, static_cast(pts_)); vector triangle; EXPECT_NO_THROW(minEnclosingTriangle(points1xN, triangle)); EXPECT_NO_THROW(minEnclosingTriangle(pointsNx1, triangle)); } //============================================================================== typedef testing::TestWithParam> fitLine_Modes; TEST_P(fitLine_Modes, accuracy) { const int data_type = get<0>(GetParam()); const int dist_type = get<1>(GetParam()); const int CN = CV_MAT_CN(data_type); const int res_type = CV_32FC(CN); for (int ITER = 0; ITER < 20; ++ITER) { SCOPED_TRACE(cv::format("iteration %d", ITER)); Mat v0(1, 1, data_type), v1(1, 1, data_type); // pt = v0 + v1 * t Mat v1n; RNG& rng = TS::ptr()->get_rng(); cvtest::randUni(rng, v0, Scalar::all(1), Scalar::all(100)); cvtest::randUni(rng, v1, Scalar::all(1), Scalar::all(100)); normalize(v1, v1n, 1, 0, NORM_L2, res_type); v0.convertTo(v0, res_type); v1.convertTo(v1, res_type); const int NUM = rng.uniform(30, 100); Mat points(NUM, 1, data_type, Scalar::all(0)); for (int i = 0; i < NUM; ++i) { Mat pt = v0 + v1 * i; if (CV_MAT_DEPTH(data_type) == CV_32F) { Mat noise = cvtest::randomMat(rng, Size(1, 1), res_type, -0.01, 0.01, false); pt += noise; } pt.copyTo(points.row(i)); } Mat line_; cv::fitLine(points, line_, dist_type, 0, 0.1, 0.01); Mat line = line_.reshape(points.channels(), 1); // check result type and size EXPECT_EQ(res_type, line.type()); EXPECT_EQ(Size(2, 1), line.size()); // check result pt1 const double angle = line.col(0).dot(v1n); EXPECT_NEAR(abs(angle), 1, 1e-2); // put result pt0 to the original equation (pt = v0 + v1 * t) and find "t" Mat diff = line.col(1) - v0; cv::divide(diff, v1, diff); cv::divide(diff, diff.at(0, 0), diff); const Mat unit(1, 1, res_type, Scalar::all(1)); EXPECT_NEAR(cvtest::norm(diff, unit, NORM_L1), 0, 0.01); } } INSTANTIATE_TEST_CASE_P(/**/, fitLine_Modes, testing::Combine( testing::Values(CV_32FC2, CV_32FC3, CV_32SC2, CV_32SC3), testing::Values(DIST_L1, DIST_L2, DIST_L12, DIST_FAIR, DIST_WELSCH, DIST_HUBER))); //============================================================================== inline float normAngle(float angle_deg) { while (angle_deg < 0.f) angle_deg += 180.f; while (angle_deg > 180.f) angle_deg -= 180.f; if (abs(angle_deg - 180.f) < 0.01) // border case angle_deg = 0.f; return angle_deg; } inline float angleToDeg(float angle_rad) { return angle_rad * 180.f / (float)M_PI; } inline float angleDiff(float a, float b) { float res = a - b; return normAngle(res); } typedef testing::TestWithParam fitEllipse_Modes; TEST_P(fitEllipse_Modes, accuracy) { const int data_type = GetParam(); const float int_scale = 1000.f; const Size sz(1, 2); const Matx22f rot {0.f, -1.f, 1.f, 0.f}; RNG& rng = TS::ptr()->get_rng(); for (int ITER = 0; ITER < 20; ++ITER) { SCOPED_TRACE(cv::format("iteration %d", ITER)); Mat f0(sz, CV_32FC1), f1(sz, CV_32FC1), f2(sz, CV_32FC1); cvtest::randUni(rng, f0, Scalar::all(-100), Scalar::all(100)); cvtest::randUni(rng, f1, Scalar::all(-100), Scalar::all(100)); if (ITER % 4 == 0) { // 0/90 degrees case f1.at(0, 0) = 0.; } // f2 is orthogonal to f1 and scaled f2 = rot * f1 * cvtest::randomDouble(0.01, 3); const Point2f ref_center(f0.at(0), f0.at(1)); const Size2f ref_size( (float)cvtest::norm(f1, NORM_L2) * 2.f, (float)cvtest::norm(f2, NORM_L2) * 2.f); const float ref_angle1 = angleToDeg(atan(f1.at(1) / f1.at(0))); const float ref_angle2 = angleToDeg(atan(f2.at(1) / f2.at(0))); const int NUM = rng.uniform(10, 30); Mat points(NUM, 1, data_type, Scalar::all(0)); for (int i = 0; i < NUM; ++i) { Mat pt = f0 + f1 * sin(i) + f2 * cos(i); pt = pt.reshape(2); if (data_type == CV_32SC2) { pt.convertTo(points.row(i), CV_32SC2, int_scale); } else if (data_type == CV_32FC2) { pt.copyTo(points.row(i)); } else { FAIL() << "unsupported data type: " << data_type; } } RotatedRect res = cv::fitEllipse(points); if (data_type == CV_32SC2) { res.center /= int_scale; res.size = Size2f(res.size.width / int_scale, res.size.height / int_scale); } const bool sizeSwap = (res.size.width < res.size.height) != (ref_size.width < ref_size.height); if (sizeSwap) { std::swap(res.size.width, res.size.height); } EXPECT_FALSE(res.size.empty()); EXPECT_POINT2_NEAR(res.center, ref_center, 0.01); const float sizeDiff = (data_type == CV_32FC2) ? 0.1f : 1.f; EXPECT_NEAR(min(res.size.width, res.size.height), min(ref_size.width, ref_size.height), sizeDiff); EXPECT_NEAR(max(res.size.width, res.size.height), max(ref_size.width, ref_size.height), sizeDiff); if (sizeSwap) { EXPECT_LE(angleDiff(ref_angle2, res.angle), 0.1); } else { EXPECT_LE(angleDiff(ref_angle1, res.angle), 0.1); } } } INSTANTIATE_TEST_CASE_P(/**/, fitEllipse_Modes, testing::Values(CV_32FC2, CV_32SC2)); //============================================================================== TEST(fitEllipse, small) { Size sz(50, 50); vector > c; c.push_back(vector()); int scale = 1; Point ofs = Point(0,0);//sz.width/2, sz.height/2) - Point(4,4)*scale; c[0].push_back(Point(2, 0)*scale+ofs); c[0].push_back(Point(0, 2)*scale+ofs); c[0].push_back(Point(0, 6)*scale+ofs); c[0].push_back(Point(2, 8)*scale+ofs); c[0].push_back(Point(6, 8)*scale+ofs); c[0].push_back(Point(8, 6)*scale+ofs); c[0].push_back(Point(8, 2)*scale+ofs); c[0].push_back(Point(6, 0)*scale+ofs); RotatedRect e = cv::fitEllipse(c[0]); EXPECT_NEAR(e.center.x, 4, 1.f); EXPECT_NEAR(e.center.y, 4, 1.f); EXPECT_NEAR(e.size.width, 9, 1.); EXPECT_NEAR(e.size.height, 9, 1.f); } //============================================================================== // points stored in rows inline static int findPointInMat(const Mat & data, const Mat & point) { for (int i = 0; i < data.rows; ++i) if (cvtest::norm(data.row(i), point, NORM_L1) == 0) return i; return -1; } // > 0 - "pt" is to the right of AB // < 0 - "pt" is to the left of AB // points stored in rows inline static double getSide(const Mat & ptA, const Mat & ptB, const Mat & pt) { Mat d0 = pt - ptA, d1 = ptB - pt, prod; vconcat(d0, d1, prod); prod = prod.reshape(1); if (prod.depth() == CV_32S) prod.convertTo(prod, CV_32F); return determinant(prod); } typedef testing::TestWithParam convexHull_Modes; TEST_P(convexHull_Modes, accuracy) { const int data_type = CV_MAKE_TYPE(GetParam(), 2); RNG & rng = TS::ptr()->get_rng(); for (int ITER = 0; ITER < 20; ++ITER) { SCOPED_TRACE(cv::format("iteration %d", ITER)); const int NUM = cvtest::randomInt(5, 100); Mat points(NUM, 1, data_type, Scalar::all(0)); cvtest::randUni(rng, points, Scalar(-10), Scalar::all(10)); Mat hull, c_hull, indexes; cv::convexHull(points, hull, false, true); // default parameters cv::convexHull(points, c_hull, true, true); // counter-clockwise cv::convexHull(points, indexes, false, false); // point indexes ASSERT_EQ(hull.size().width, 1); ASSERT_GE(hull.size().height, 3); ASSERT_EQ(hull.size(), c_hull.size()); ASSERT_EQ(hull.size(), indexes.size()); // find shift between hull and counter-clockwise hull const int c_diff = findPointInMat(hull, c_hull.row(0)); ASSERT_NE(c_diff, -1); const int sz = (int)hull.total(); for (int i = 0; i < sz; ++i) { SCOPED_TRACE(cv::format("vertex %d", i)); Mat prev = (i == 0) ? hull.row(sz - 1) : hull.row(i - 1); Mat cur = hull.row(i); Mat next = (i != sz - 1) ? hull.row(i + 1) : hull.row(0); // 1. "cur' is one of points EXPECT_NE(findPointInMat(points, cur), -1); // 2. convexity: "cur" is on right side of "prev - next" edge EXPECT_GE(getSide(prev, next, cur), 0); // 3. all points are inside polygon - on the left side of "cur - next" edge for (int j = 0; j < points.rows; ++j) { SCOPED_TRACE(cv::format("point %d", j)); EXPECT_LE(getSide(cur, next, points.row(j)), 0); } // check counter-clockwise hull const int c_idx = (sz - i + c_diff) % sz; Mat c_cur = c_hull.row(c_idx); EXPECT_MAT_NEAR(cur, c_cur, 0); // check indexed hull const int pt_index = indexes.at(i); EXPECT_MAT_NEAR(cur, points.row(pt_index), 0); } } } INSTANTIATE_TEST_CASE_P(/**/, convexHull_Modes, testing::Values(CV_32F, CV_32S)); //============================================================================== typedef testing::TestWithParam minAreaRect_Modes; TEST_P(minAreaRect_Modes, accuracy) { const int data_type = CV_MAKE_TYPE(GetParam(), 2); RNG & rng = TS::ptr()->get_rng(); for (int ITER = 0; ITER < 20; ++ITER) { SCOPED_TRACE(cv::format("iteration %d", ITER)); const int NUM = cvtest::randomInt(5, 100); Mat points(NUM, 1, data_type, Scalar::all(0)); cvtest::randUni(rng, points, Scalar(-10), Scalar::all(10)); const RotatedRect res = cv::minAreaRect(points); Point2f box_pts[4] {}; res.points(box_pts); // check that the box contains all the points - all on one side double common_side = 0.; bool edgeHasPoint[4] {0}; for (int i = 0; i < 4; ++i) { const int j = (i == 3) ? 0 : i + 1; Mat cur(1, 1, CV_32FC2, box_pts + i); Mat next(1, 1, CV_32FC2, box_pts + j); for (int k = 0; k < points.rows; ++k) { SCOPED_TRACE(cv::format("point %d", j)); Mat one_point; points.row(k).convertTo(one_point, CV_32FC2); const double side = getSide(cur, next, one_point); if (abs(side) < 0.01) // point on edge - no need to check { edgeHasPoint[i] = true; continue; } if (common_side == 0.) // initial state { common_side = side > 0 ? 1. : -1.; // only sign matters } else { EXPECT_EQ(common_side > 0, side > 0) << common_side << ", " << side; } } } EXPECT_TRUE(edgeHasPoint[0] && edgeHasPoint[1] && edgeHasPoint[2] && edgeHasPoint[3]); } } INSTANTIATE_TEST_CASE_P(/**/, minAreaRect_Modes, testing::Values(CV_32F, CV_32S)); //============================================================================== // true if "point" is on one of hull's edges inline static bool isPointOnHull(const Mat &hull, const Mat &point, const double thresh = 0.01) { const int sz = hull.rows; for (int k = 0; k < sz; ++k) { const double side = getSide(hull.row(k), hull.row(k == sz - 1 ? 0 : k + 1), point); if (abs(side) < thresh) return true; } return false; } // true if one of hull's edges touches "A-B" inline static bool isEdgeOnHull(const Mat &hull, const Mat &ptA, const Mat &ptB, const double thresh = 0.01) { const int sz = hull.rows; double prev_side = getSide(ptA, ptB, hull.row(sz - 1)); for (int k = 0; k < sz; ++k) { Mat cur = hull.row(k); const double cur_side = getSide(ptA, ptB, cur); if (abs(prev_side) < thresh && abs(cur_side) < thresh) return true; prev_side = cur_side; } return false; } typedef testing::TestWithParam minEnclosingTriangle_Modes; TEST_P(minEnclosingTriangle_Modes, accuracy) { const int data_type = CV_MAKETYPE(GetParam(), 2); RNG & rng = TS::ptr()->get_rng(); for (int ITER = 0; ITER < 20; ++ITER) { SCOPED_TRACE(cv::format("iteration %d", ITER)); const int NUM = cvtest::randomInt(5, 100); Mat points(NUM, 1, data_type, Scalar::all(0)); cvtest::randUni(rng, points, Scalar::all(-100), Scalar::all(100)); Mat triangle; const double area = cv::minEnclosingTriangle(points, triangle); ASSERT_GT(area, 0.0001); ASSERT_EQ(triangle.type(), CV_32FC2); triangle = triangle.reshape(2, 1); ASSERT_EQ(triangle.size(), Size(3, 1)); Mat hull; cv::convexHull(points, hull); hull.convertTo(hull, CV_32FC2); // check that all points are enclosed by triangle sides double commonSide = 0.; bool hasEdgeOnHull = false; for (int i = 0; i < 3; ++i) { SCOPED_TRACE(cv::format("edge %d", i)); const int j = (i == 2) ? 0 : i + 1; Mat cur = triangle.col(i); Mat next = triangle.col(j); for (int k = 0; k < points.rows; ++k) { SCOPED_TRACE(cv::format("point %d", k)); Mat pt; points.row(k).convertTo(pt, CV_32FC2); const double side = getSide(cur, next, pt); if (abs(side) < 0.01) // point on edge - no need to check continue; if (commonSide == 0.f) // initial state { commonSide = side > 0 ? 1.f : -1.f; // only sign matters } else { // either on the same side or close to zero EXPECT_EQ(commonSide > 0, side > 0) << commonSide << ", side=" << side; } } // triangle mid-points must be on the hull edges const Mat midPoint = (cur + next) / 2; EXPECT_TRUE(isPointOnHull(hull, midPoint)); // at least one of hull edges must be on tirangle edge hasEdgeOnHull = hasEdgeOnHull || isEdgeOnHull(hull, cur, next); } EXPECT_TRUE(hasEdgeOnHull); } } INSTANTIATE_TEST_CASE_P(/**/, minEnclosingTriangle_Modes, testing::Values(CV_32F, CV_32S)); //============================================================================== typedef testing::TestWithParam minEnclosingCircle_Modes; TEST_P(minEnclosingCircle_Modes, accuracy) { const int data_type = CV_MAKETYPE(GetParam(), 2); RNG & rng = TS::ptr()->get_rng(); for (int ITER = 0; ITER < 20; ++ITER) { SCOPED_TRACE(cv::format("iteration %d", ITER)); const int NUM = cvtest::randomInt(5, 100); Mat points(NUM, 1, data_type, Scalar::all(0)), fpoints; cvtest::randUni(rng, points, Scalar::all(-100), Scalar::all(100)); points.convertTo(fpoints, CV_32FC2); Point2f center {}; float radius = 0.f; cv::minEnclosingCircle(points, center, radius); vector boundPts; // indexes for (int i = 0; i < NUM; ++i) { Point2f pt = fpoints.at(i); const double dist = cv::norm(pt - center); EXPECT_LE(dist, radius); if (abs(dist - radius) < 0.01) boundPts.push_back(i); } // 2 points on diameter or at least 3 points on circle EXPECT_GE(boundPts.size(), 2llu); // 2 points on diameter if (boundPts.size() == 2llu) { const Point2f diff = fpoints.at(boundPts[0]) - fpoints.at(boundPts[1]); EXPECT_NEAR(cv::norm(diff), 2 * radius, 0.001); } } } INSTANTIATE_TEST_CASE_P(/**/, minEnclosingCircle_Modes, testing::Values(CV_32F, CV_32S)); //============================================================================== TEST(minEnclosingCircle, three_points) { RNG & rng = TS::ptr()->get_rng(); Point2f center = Point2f(rng.uniform(0.0f, 1000.0f), rng.uniform(0.0f, 1000.0f));; float radius = rng.uniform(0.0f, 500.0f); float angle = (float)rng.uniform(0.0f, (float)(CV_2PI)); vector pts; pts.push_back(center + Point2f(radius * cos(angle), radius * sin(angle))); angle += (float)CV_PI; pts.push_back(center + Point2f(radius * cos(angle), radius * sin(angle))); float radius2 = radius * radius; float x = rng.uniform(center.x - radius, center.x + radius); float deltaX = x - center.x; float upperBoundY = sqrt(radius2 - deltaX * deltaX); float y = rng.uniform(center.y - upperBoundY, center.y + upperBoundY); pts.push_back(Point2f(x, y)); // Find the minimum area enclosing circle Point2f calcCenter; float calcRadius; cv::minEnclosingCircle(pts, calcCenter, calcRadius); const float delta = (float)cv::norm(calcCenter - center) + abs(calcRadius - radius); EXPECT_LE(delta, 1.f); } }} // namespace /* End of file. */