//M*////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ * Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm. * * Contributed by Kurt Konolige * \****************************************************************************************/ #include "precomp.hpp" #include #include #include #include "opencl_kernels_calib3d.hpp" #include "opencv2/core/hal/intrin.hpp" #include "opencv2/core/utils/buffer_area.private.hpp" namespace cv { struct StereoBMParams { StereoBMParams(int _numDisparities=64, int _SADWindowSize=21) { preFilterType = StereoBM::PREFILTER_XSOBEL; preFilterSize = 9; preFilterCap = 31; SADWindowSize = _SADWindowSize; minDisparity = 0; numDisparities = _numDisparities > 0 ? _numDisparities : 64; textureThreshold = 10; uniquenessRatio = 15; speckleRange = speckleWindowSize = 0; roi1 = roi2 = Rect(0,0,0,0); disp12MaxDiff = -1; dispType = CV_16S; } int preFilterType; int preFilterSize; int preFilterCap; int SADWindowSize; int minDisparity; int numDisparities; int textureThreshold; int uniquenessRatio; int speckleRange; int speckleWindowSize; Rect roi1, roi2; int disp12MaxDiff; int dispType; inline bool useShorts() const { return preFilterCap <= 31 && SADWindowSize <= 21; } inline bool useFilterSpeckles() const { return speckleRange >= 0 && speckleWindowSize > 0; } inline bool useNormPrefilter() const { return preFilterType == StereoBM::PREFILTER_NORMALIZED_RESPONSE; } }; #ifdef HAVE_OPENCL static bool ocl_prefilter_norm(InputArray _input, OutputArray _output, int winsize, int prefilterCap) { ocl::Kernel k("prefilter_norm", ocl::calib3d::stereobm_oclsrc, cv::format("-D WSZ=%d", winsize)); if(k.empty()) return false; int scale_g = winsize*winsize/8, scale_s = (1024 + scale_g)/(scale_g*2); scale_g *= scale_s; UMat input = _input.getUMat(), output; _output.create(input.size(), input.type()); output = _output.getUMat(); size_t globalThreads[3] = { (size_t)input.cols, (size_t)input.rows, 1 }; k.args(ocl::KernelArg::PtrReadOnly(input), ocl::KernelArg::PtrWriteOnly(output), input.rows, input.cols, prefilterCap, scale_g, scale_s); return k.run(2, globalThreads, NULL, false); } #endif static void prefilterNorm( const Mat& src, Mat& dst, int winsize, int ftzero, int *buf ) { int x, y, wsz2 = winsize/2; int* vsum = buf + (wsz2 + 1); int scale_g = winsize*winsize/8, scale_s = (1024 + scale_g)/(scale_g*2); const int OFS = 256*5, TABSZ = OFS*2 + 256; uchar tab[TABSZ]; const uchar* sptr = src.ptr(); int srcstep = (int)src.step; Size size = src.size(); scale_g *= scale_s; for( x = 0; x < TABSZ; x++ ) tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero*2 : x - OFS + ftzero); for( x = 0; x < size.width; x++ ) vsum[x] = (ushort)(sptr[x]*(wsz2 + 2)); for( y = 1; y < wsz2; y++ ) { for( x = 0; x < size.width; x++ ) vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]); } for( y = 0; y < size.height; y++ ) { const uchar* top = sptr + srcstep*MAX(y-wsz2-1,0); const uchar* bottom = sptr + srcstep*MIN(y+wsz2,size.height-1); const uchar* prev = sptr + srcstep*MAX(y-1,0); const uchar* curr = sptr + srcstep*y; const uchar* next = sptr + srcstep*MIN(y+1,size.height-1); uchar* dptr = dst.ptr(y); for( x = 0; x < size.width; x++ ) vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]); for( x = 0; x <= wsz2; x++ ) { vsum[-x-1] = vsum[0]; vsum[size.width+x] = vsum[size.width-1]; } int sum = vsum[0]*(wsz2 + 1); for( x = 1; x <= wsz2; x++ ) sum += vsum[x]; int val = ((curr[0]*5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10; dptr[0] = tab[val + OFS]; for( x = 1; x < size.width-1; x++ ) { sum += vsum[x+wsz2] - vsum[x-wsz2-1]; val = ((curr[x]*4 + curr[x-1] + curr[x+1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; dptr[x] = tab[val + OFS]; } sum += vsum[x+wsz2] - vsum[x-wsz2-1]; val = ((curr[x]*5 + curr[x-1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; dptr[x] = tab[val + OFS]; } } #ifdef HAVE_OPENCL static bool ocl_prefilter_xsobel(InputArray _input, OutputArray _output, int prefilterCap) { ocl::Kernel k("prefilter_xsobel", ocl::calib3d::stereobm_oclsrc); if(k.empty()) return false; UMat input = _input.getUMat(), output; _output.create(input.size(), input.type()); output = _output.getUMat(); size_t globalThreads[3] = { (size_t)input.cols, (size_t)input.rows, 1 }; k.args(ocl::KernelArg::PtrReadOnly(input), ocl::KernelArg::PtrWriteOnly(output), input.rows, input.cols, prefilterCap); return k.run(2, globalThreads, NULL, false); } #endif static void prefilterXSobel( const Mat& src, Mat& dst, int ftzero ) { int x, y; const int OFS = 256*4, TABSZ = OFS*2 + 256; uchar tab[TABSZ] = { 0 }; Size size = src.size(); for( x = 0; x < TABSZ; x++ ) tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero*2 : x - OFS + ftzero); uchar val0 = tab[0 + OFS]; for( y = 0; y < size.height-1; y += 2 ) { const uchar* srow1 = src.ptr(y); const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1; const uchar* srow2 = y < size.height-1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1; const uchar* srow3 = y < size.height-2 ? srow1 + src.step*2 : srow1; uchar* dptr0 = dst.ptr(y); uchar* dptr1 = dptr0 + dst.step; dptr0[0] = dptr0[size.width-1] = dptr1[0] = dptr1[size.width-1] = val0; x = 1; #if CV_SIMD { v_int16 ftz = vx_setall_s16((short) ftzero); v_int16 ftz2 = vx_setall_s16((short)(ftzero*2)); v_int16 z = vx_setzero_s16(); for(; x <= (size.width - 1) - v_int16::nlanes; x += v_int16::nlanes) { v_int16 s00 = v_reinterpret_as_s16(vx_load_expand(srow0 + x + 1)); v_int16 s01 = v_reinterpret_as_s16(vx_load_expand(srow0 + x - 1)); v_int16 s10 = v_reinterpret_as_s16(vx_load_expand(srow1 + x + 1)); v_int16 s11 = v_reinterpret_as_s16(vx_load_expand(srow1 + x - 1)); v_int16 s20 = v_reinterpret_as_s16(vx_load_expand(srow2 + x + 1)); v_int16 s21 = v_reinterpret_as_s16(vx_load_expand(srow2 + x - 1)); v_int16 s30 = v_reinterpret_as_s16(vx_load_expand(srow3 + x + 1)); v_int16 s31 = v_reinterpret_as_s16(vx_load_expand(srow3 + x - 1)); v_int16 d0 = s00 - s01; v_int16 d1 = s10 - s11; v_int16 d2 = s20 - s21; v_int16 d3 = s30 - s31; v_uint16 v0 = v_reinterpret_as_u16(v_max(v_min(d0 + d1 + d1 + d2 + ftz, ftz2), z)); v_uint16 v1 = v_reinterpret_as_u16(v_max(v_min(d1 + d2 + d2 + d3 + ftz, ftz2), z)); v_pack_store(dptr0 + x, v0); v_pack_store(dptr1 + x, v1); } } #endif for( ; x < size.width-1; x++ ) { int d0 = srow0[x+1] - srow0[x-1], d1 = srow1[x+1] - srow1[x-1], d2 = srow2[x+1] - srow2[x-1], d3 = srow3[x+1] - srow3[x-1]; int v0 = tab[d0 + d1*2 + d2 + OFS]; int v1 = tab[d1 + d2*2 + d3 + OFS]; dptr0[x] = (uchar)v0; dptr1[x] = (uchar)v1; } } for( ; y < size.height; y++ ) { uchar* dptr = dst.ptr(y); x = 0; #if CV_SIMD { v_uint8 val0_16 = vx_setall_u8(val0); for(; x <= size.width-v_uint8::nlanes; x+=v_uint8::nlanes) v_store(dptr + x, val0_16); } #endif for(; x < size.width; x++ ) dptr[x] = val0; } } static const int DISPARITY_SHIFT_16S = 4; static const int DISPARITY_SHIFT_32S = 8; template struct dispShiftTemplate { }; template<> struct dispShiftTemplate { enum { value = DISPARITY_SHIFT_16S }; }; template<> struct dispShiftTemplate { enum { value = DISPARITY_SHIFT_32S }; }; template inline T dispDescale(int /*v1*/, int /*v2*/, int /*d*/); template<> inline short dispDescale(int v1, int v2, int d) { return (short)((v1*256 + (d != 0 ? v2*256/d : 0) + 15) >> 4); } template <> inline int dispDescale(int v1, int v2, int d) { return (int)(v1*256 + (d != 0 ? v2*256/d : 0)); // no need to add 127, this will be converted to float } class BufferBM { static const int TABSZ = 256; public: std::vector sad; std::vector hsad; std::vector htext; std::vector cbuf0; std::vector sad_short; std::vector hsad_short; int *prefilter[2]; uchar tab[TABSZ]; private: utils::BufferArea area; public: BufferBM(size_t nstripes, size_t width, size_t height, const StereoBMParams& params) : sad(nstripes, NULL), hsad(nstripes, NULL), htext(nstripes, NULL), cbuf0(nstripes, NULL), sad_short(nstripes, NULL), hsad_short(nstripes, NULL), prefilter() { const int wsz = params.SADWindowSize; const int ndisp = params.numDisparities; const int ftzero = params.preFilterCap; for (size_t i = 0; i < nstripes; ++i) { // 1D: [1][ ndisp ][1] #if CV_SIMD if (params.useShorts()) area.allocate(sad_short[i], ndisp + 2); else #endif area.allocate(sad[i], ndisp + 2); // 2D: [ wsz/2 + 1 ][ height ][ wsz/2 + 1 ] * [ ndisp ] #if CV_SIMD if (params.useShorts()) area.allocate(hsad_short[i], (height + wsz + 2) * ndisp); else #endif area.allocate(hsad[i], (height + wsz + 2) * ndisp); // 1D: [ wsz/2 + 1 ][ height ][ wsz/2 + 1 ] area.allocate(htext[i], (height + wsz + 2)); // 3D: [ wsz/2 + 1 ][ height ][ wsz/2 + 1 ] * [ ndisp ] * [ wsz/2 + 1 ][ wsz/2 + 1 ] area.allocate(cbuf0[i], ((height + wsz + 2) * ndisp * (wsz + 2) + 256)); } if (params.useNormPrefilter()) { for (size_t i = 0; i < 2; ++i) area.allocate(prefilter[i], width + params.preFilterSize + 2); } area.commit(); // static table for (int x = 0; x < TABSZ; x++) tab[x] = (uchar)std::abs(x - ftzero); } }; #if CV_SIMD template static void findStereoCorrespondenceBM_SIMD( const Mat& left, const Mat& right, Mat& disp, Mat& cost, const StereoBMParams& state, int _dy0, int _dy1, const BufferBM & bufX, size_t bufNum ) { int x, y, d; int wsz = state.SADWindowSize, wsz2 = wsz/2; int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1); int ndisp = state.numDisparities; int mindisp = state.minDisparity; int lofs = MAX(ndisp - 1 + mindisp, 0); int rofs = -MIN(ndisp - 1 + mindisp, 0); int width = left.cols, height = left.rows; int width1 = width - rofs - ndisp + 1; int textureThreshold = state.textureThreshold; int uniquenessRatio = state.uniquenessRatio; const int disp_shift = dispShiftTemplate::value; dType FILTERED = (dType)((mindisp - 1) << disp_shift); ushort *hsad, *hsad_sub; uchar *cbuf; const uchar* lptr0 = left.ptr() + lofs; const uchar* rptr0 = right.ptr() + rofs; const uchar *lptr, *lptr_sub, *rptr; dType* dptr = disp.ptr(); int sstep = (int)left.step; int dstep = (int)(disp.step/sizeof(dptr[0])); int cstep = (height + dy0 + dy1)*ndisp; short costbuf = 0; int coststep = cost.data ? (int)(cost.step/sizeof(costbuf)) : 0; const uchar * tab = bufX.tab; short v_seq[v_int16::nlanes]; for (short i = 0; i < v_int16::nlanes; ++i) v_seq[i] = i; ushort *sad = bufX.sad_short[bufNum] + 1; ushort *hsad0 = bufX.hsad_short[bufNum] + (wsz2 + 1) * ndisp; int *htext = bufX.htext[bufNum] + (wsz2 + 1); uchar *cbuf0 = bufX.cbuf0[bufNum] + (wsz2 + 1) * ndisp; // initialize buffers memset(sad - 1, 0, (ndisp + 2) * sizeof(sad[0])); memset(hsad0 - dy0 * ndisp, 0, (height + wsz + 2) * ndisp * sizeof(hsad[0])); memset(htext - dy0, 0, (height + wsz + 2) * sizeof(htext[0])); for( x = -wsz2-1; x < wsz2; x++ ) { hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp; lptr = lptr0 + MIN(MAX(x, -lofs), width-lofs-1) - dy0*sstep; rptr = rptr0 + MIN(MAX(x, -rofs), width-rofs-ndisp) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep ) { int lval = lptr[0]; v_uint8 lv = vx_setall_u8((uchar)lval); for( d = 0; d <= ndisp - v_uint8::nlanes; d += v_uint8::nlanes ) { v_uint8 diff = v_absdiff(lv, vx_load(rptr + d)); v_store(cbuf + d, diff); v_store(hsad + d, vx_load(hsad + d) + v_expand_low(diff)); v_store(hsad + d + v_uint16::nlanes, vx_load(hsad + d + v_uint16::nlanes) + v_expand_high(diff)); } if( d <= ndisp - v_uint16::nlanes ) { v_uint8 diff = v_absdiff(lv, vx_load_low(rptr + d)); v_store_low(cbuf + d, diff); v_store(hsad + d, vx_load(hsad + d) + v_expand_low(diff)); d += v_uint16::nlanes; } for( ; d < ndisp; d++ ) { int diff = abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] += (ushort)diff; } htext[y] += tab[lval]; } } // initialize the left and right borders of the disparity map for( y = 0; y < height; y++ ) { for( x = 0; x < lofs; x++ ) dptr[y*dstep + x] = FILTERED; for( x = lofs + width1; x < width; x++ ) dptr[y*dstep + x] = FILTERED; } dptr += lofs; for( x = 0; x < width1; x++, dptr++ ) { short* costptr = cost.data ? cost.ptr() + lofs + x : &costbuf; int x0 = x - wsz2 - 1, x1 = x + wsz2; const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; hsad = hsad0 - dy0*ndisp; lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep; lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep; rptr = rptr0 + MIN(MAX(x1, -rofs), width-ndisp-rofs) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep ) { int lval = lptr[0]; v_uint8 lv = vx_setall_u8((uchar)lval); for( d = 0; d <= ndisp - v_uint8::nlanes; d += v_uint8::nlanes ) { v_uint8 diff = v_absdiff(lv, vx_load(rptr + d)); v_int8 cbs = v_reinterpret_as_s8(vx_load(cbuf_sub + d)); v_store(cbuf + d, diff); v_store(hsad + d, v_reinterpret_as_u16(v_reinterpret_as_s16(vx_load(hsad + d) + v_expand_low(diff)) - v_expand_low(cbs))); v_store(hsad + d + v_uint16::nlanes, v_reinterpret_as_u16(v_reinterpret_as_s16(vx_load(hsad + d + v_uint16::nlanes) + v_expand_high(diff)) - v_expand_high(cbs))); } if( d <= ndisp - v_uint16::nlanes) { v_uint8 diff = v_absdiff(lv, vx_load_low(rptr + d)); v_store_low(cbuf + d, diff); v_store(hsad + d, v_reinterpret_as_u16(v_reinterpret_as_s16(vx_load(hsad + d) + v_expand_low(diff)) - vx_load_expand((schar*)cbuf_sub + d))); d += v_uint16::nlanes; } for( ; d < ndisp; d++ ) { int diff = abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = hsad[d] + (ushort)diff - cbuf_sub[d]; } htext[y] += tab[lval] - tab[lptr_sub[0]]; } // fill borders for( y = dy1; y <= wsz2; y++ ) htext[height+y] = htext[height+dy1-1]; for( y = -wsz2-1; y < -dy0; y++ ) htext[y] = htext[-dy0]; // initialize sums for( d = 0; d < ndisp; d++ ) sad[d] = (ushort)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0)); hsad = hsad0 + (1 - dy0)*ndisp; for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp ) { for( d = 0; d <= ndisp-2*v_uint16::nlanes; d += 2*v_uint16::nlanes ) { v_store(sad + d, vx_load(sad + d) + vx_load(hsad + d)); v_store(sad + d + v_uint16::nlanes, vx_load(sad + d + v_uint16::nlanes) + vx_load(hsad + d + v_uint16::nlanes)); } if( d <= ndisp-v_uint16::nlanes ) { v_store(sad + d, vx_load(sad + d) + vx_load(hsad + d)); d += v_uint16::nlanes; } if( d <= ndisp-v_uint16::nlanes/2 ) { v_store_low(sad + d, vx_load_low(sad + d) + vx_load_low(hsad + d)); d += v_uint16::nlanes/2; } for( ; d < ndisp; d++ ) sad[d] = sad[d] + hsad[d]; } int tsum = 0; for( y = -wsz2-1; y < wsz2; y++ ) tsum += htext[y]; // finally, start the real processing for( y = 0; y < height; y++ ) { int minsad = INT_MAX, mind = -1; hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp; hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp; v_int16 minsad8 = vx_setall_s16(SHRT_MAX); v_int16 mind8 = vx_setall_s16(0); for( d = 0; d <= ndisp - 2*v_int16::nlanes; d += 2*v_int16::nlanes ) { v_int16 sad8 = v_reinterpret_as_s16(vx_load(hsad + d)) - v_reinterpret_as_s16(vx_load(hsad_sub + d)) + v_reinterpret_as_s16(vx_load(sad + d)); v_store(sad + d, v_reinterpret_as_u16(sad8)); mind8 = v_max(mind8, (minsad8 > sad8) & vx_setall_s16((short)d)); minsad8 = v_min(minsad8, sad8); sad8 = v_reinterpret_as_s16(vx_load(hsad + d + v_int16::nlanes)) - v_reinterpret_as_s16(vx_load(hsad_sub + d + v_int16::nlanes)) + v_reinterpret_as_s16(vx_load(sad + d + v_int16::nlanes)); v_store(sad + d + v_int16::nlanes, v_reinterpret_as_u16(sad8)); mind8 = v_max(mind8, (minsad8 > sad8) & vx_setall_s16((short)d+v_int16::nlanes)); minsad8 = v_min(minsad8, sad8); } if( d <= ndisp - v_int16::nlanes ) { v_int16 sad8 = v_reinterpret_as_s16(vx_load(hsad + d)) - v_reinterpret_as_s16(vx_load(hsad_sub + d)) + v_reinterpret_as_s16(vx_load(sad + d)); v_store(sad + d, v_reinterpret_as_u16(sad8)); mind8 = v_max(mind8, (minsad8 > sad8) & vx_setall_s16((short)d)); minsad8 = v_min(minsad8, sad8); d += v_int16::nlanes; } minsad = v_reduce_min(minsad8); v_int16 v_mask = (vx_setall_s16((short)minsad) == minsad8); mind = v_reduce_min(((mind8+vx_load(v_seq)) & v_mask) | (vx_setall_s16(SHRT_MAX) & ~v_mask)); for( ; d < ndisp; d++ ) { int sad8 = (int)(hsad[d]) - hsad_sub[d] + sad[d]; sad[d] = (ushort)sad8; if(minsad > sad8) { mind = d; minsad = sad8; } } tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; if( tsum < textureThreshold ) { dptr[y*dstep] = FILTERED; continue; } if( uniquenessRatio > 0 ) { int thresh = minsad + (minsad * uniquenessRatio/100); v_int32 thresh4 = vx_setall_s32(thresh + 1); v_int32 d1 = vx_setall_s32(mind-1), d2 = vx_setall_s32(mind+1); v_int32 dd_4 = vx_setall_s32(v_int32::nlanes); v_int32 d4 = vx_load_expand(v_seq); for( d = 0; d <= ndisp - v_int16::nlanes; d += v_int16::nlanes ) { v_int32 sad4_l, sad4_h; v_expand(v_reinterpret_as_s16(vx_load(sad + d)), sad4_l, sad4_h); if( v_check_any((thresh4 > sad4_l) & ((d1 > d4) | (d4 > d2))) ) break; d4 += dd_4; if( v_check_any((thresh4 > sad4_h) & ((d1 > d4) | (d4 > d2))) ) break; d4 += dd_4; } if( d <= ndisp - v_int16::nlanes ) { dptr[y*dstep] = FILTERED; continue; } if( d <= ndisp - v_int32::nlanes ) { v_int32 sad4_l = vx_load_expand((short*)sad + d); if (v_check_any((thresh4 > sad4_l) & ((d1 > d4) | (d4 > d2)))) { dptr[y*dstep] = FILTERED; continue; } d += v_int16::nlanes; } for( ; d < ndisp; d++ ) { if( (thresh + 1) > sad[d] && ((mind - 1) > d || d > (mind + 1)) ) break; } if( d < ndisp ) { dptr[y*dstep] = FILTERED; continue; } } if( 0 < mind && mind < ndisp - 1 ) { int p = sad[mind+1], n = sad[mind-1]; d = p + n - 2*sad[mind] + std::abs(p - n); dptr[y*dstep] = dispDescale(ndisp - mind - 1 + mindisp, p-n, d); } else dptr[y*dstep] = dispDescale(ndisp - mind - 1 + mindisp, 0, 0); costptr[y*coststep] = sad[mind]; } } } #endif template static void findStereoCorrespondenceBM( const Mat& left, const Mat& right, Mat& disp, Mat& cost, const StereoBMParams& state, int _dy0, int _dy1, const BufferBM & bufX, size_t bufNum ) { int x, y, d; int wsz = state.SADWindowSize, wsz2 = wsz/2; int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1); int ndisp = state.numDisparities; int mindisp = state.minDisparity; int lofs = MAX(ndisp - 1 + mindisp, 0); int rofs = -MIN(ndisp - 1 + mindisp, 0); int width = left.cols, height = left.rows; int width1 = width - rofs - ndisp + 1; int textureThreshold = state.textureThreshold; int uniquenessRatio = state.uniquenessRatio; const int disp_shift = dispShiftTemplate::value; mType FILTERED = (mType)((mindisp - 1) << disp_shift); int *hsad, *hsad_sub; uchar *cbuf; const uchar* lptr0 = left.ptr() + lofs; const uchar* rptr0 = right.ptr() + rofs; const uchar *lptr, *lptr_sub, *rptr; mType* dptr = disp.ptr(); int sstep = (int)left.step; int dstep = (int)(disp.step/sizeof(dptr[0])); int cstep = (height+dy0+dy1)*ndisp; int costbuf = 0; int coststep = cost.data ? (int)(cost.step/sizeof(costbuf)) : 0; const uchar * tab = bufX.tab; #if CV_SIMD int v_seq[v_int32::nlanes]; for (int i = 0; i < v_int32::nlanes; ++i) v_seq[i] = i; v_int32 d0_4 = vx_load(v_seq), dd_4 = vx_setall_s32(v_int32::nlanes); #endif int *sad = bufX.sad[bufNum] + 1; int *hsad0 = bufX.hsad[bufNum] + (wsz2 + 1) * ndisp; int *htext = bufX.htext[bufNum] + (wsz2 + 1); uchar *cbuf0 = bufX.cbuf0[bufNum] + (wsz2 + 1) * ndisp; // initialize buffers memset(sad - 1, 0, (ndisp + 2) * sizeof(sad[0])); memset(hsad0 - dy0 * ndisp, 0, (height + wsz + 2) * ndisp * sizeof(hsad[0])); memset(htext - dy0, 0, (height + wsz + 2) * sizeof(htext[0])); for( x = -wsz2-1; x < wsz2; x++ ) { hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp; lptr = lptr0 + std::min(std::max(x, -lofs), width-lofs-1) - dy0*sstep; rptr = rptr0 + std::min(std::max(x, -rofs), width-rofs-ndisp) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep ) { int lval = lptr[0]; d = 0; #if CV_SIMD { v_uint8 lv = vx_setall_u8((uchar)lval); for( ; d <= ndisp - v_uint8::nlanes; d += v_uint8::nlanes ) { v_uint8 rv = vx_load(rptr + d); v_int32 hsad_0 = vx_load(hsad + d); v_int32 hsad_1 = vx_load(hsad + d + v_int32::nlanes); v_int32 hsad_2 = vx_load(hsad + d + 2*v_int32::nlanes); v_int32 hsad_3 = vx_load(hsad + d + 3*v_int32::nlanes); v_uint8 diff = v_absdiff(lv, rv); v_store(cbuf + d, diff); v_uint16 diff0, diff1; v_uint32 diff00, diff01, diff10, diff11; v_expand(diff, diff0, diff1); v_expand(diff0, diff00, diff01); v_expand(diff1, diff10, diff11); hsad_0 += v_reinterpret_as_s32(diff00); hsad_1 += v_reinterpret_as_s32(diff01); hsad_2 += v_reinterpret_as_s32(diff10); hsad_3 += v_reinterpret_as_s32(diff11); v_store(hsad + d, hsad_0); v_store(hsad + d + v_int32::nlanes, hsad_1); v_store(hsad + d + 2*v_int32::nlanes, hsad_2); v_store(hsad + d + 3*v_int32::nlanes, hsad_3); } } #endif for( ; d < ndisp; d++ ) { int diff = std::abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = (int)(hsad[d] + diff); } htext[y] += tab[lval]; } } // initialize the left and right borders of the disparity map for( y = 0; y < height; y++ ) { for( x = 0; x < lofs; x++ ) dptr[y*dstep + x] = FILTERED; for( x = lofs + width1; x < width; x++ ) dptr[y*dstep + x] = FILTERED; } dptr += lofs; for( x = 0; x < width1; x++, dptr++ ) { int* costptr = cost.data ? cost.ptr() + lofs + x : &costbuf; int x0 = x - wsz2 - 1, x1 = x + wsz2; const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; hsad = hsad0 - dy0*ndisp; lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep; lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep; rptr = rptr0 + MIN(MAX(x1, -rofs), width-ndisp-rofs) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep ) { int lval = lptr[0]; d = 0; #if CV_SIMD { v_uint8 lv = vx_setall_u8((uchar)lval); for( ; d <= ndisp - v_uint8::nlanes; d += v_uint8::nlanes ) { v_uint8 rv = vx_load(rptr + d); v_int32 hsad_0 = vx_load(hsad + d); v_int32 hsad_1 = vx_load(hsad + d + v_int32::nlanes); v_int32 hsad_2 = vx_load(hsad + d + 2*v_int32::nlanes); v_int32 hsad_3 = vx_load(hsad + d + 3*v_int32::nlanes); v_uint8 cbs = vx_load(cbuf_sub + d); v_uint8 diff = v_absdiff(lv, rv); v_store(cbuf + d, diff); v_uint16 diff0, diff1, cbs0, cbs1; v_int32 diff00, diff01, diff10, diff11, cbs00, cbs01, cbs10, cbs11; v_expand(diff, diff0, diff1); v_expand(cbs, cbs0, cbs1); v_expand(v_reinterpret_as_s16(diff0), diff00, diff01); v_expand(v_reinterpret_as_s16(diff1), diff10, diff11); v_expand(v_reinterpret_as_s16(cbs0), cbs00, cbs01); v_expand(v_reinterpret_as_s16(cbs1), cbs10, cbs11); v_int32 diff_0 = diff00 - cbs00; v_int32 diff_1 = diff01 - cbs01; v_int32 diff_2 = diff10 - cbs10; v_int32 diff_3 = diff11 - cbs11; hsad_0 += diff_0; hsad_1 += diff_1; hsad_2 += diff_2; hsad_3 += diff_3; v_store(hsad + d, hsad_0); v_store(hsad + d + v_int32::nlanes, hsad_1); v_store(hsad + d + 2*v_int32::nlanes, hsad_2); v_store(hsad + d + 3*v_int32::nlanes, hsad_3); } } #endif for( ; d < ndisp; d++ ) { int diff = std::abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = hsad[d] + diff - cbuf_sub[d]; } htext[y] += tab[lval] - tab[lptr_sub[0]]; } // fill borders for( y = dy1; y <= wsz2; y++ ) htext[height+y] = htext[height+dy1-1]; for( y = -wsz2-1; y < -dy0; y++ ) htext[y] = htext[-dy0]; // initialize sums for( d = 0; d < ndisp; d++ ) sad[d] = (int)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0)); hsad = hsad0 + (1 - dy0)*ndisp; for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp ) { d = 0; #if CV_SIMD { for( d = 0; d <= ndisp-2*v_int32::nlanes; d += 2*v_int32::nlanes ) { v_int32 s0 = vx_load(sad + d); v_int32 s1 = vx_load(sad + d + v_int32::nlanes); v_int32 t0 = vx_load(hsad + d); v_int32 t1 = vx_load(hsad + d + v_int32::nlanes); s0 += t0; s1 += t1; v_store(sad + d, s0); v_store(sad + d + v_int32::nlanes, s1); } } #endif for( ; d < ndisp; d++ ) sad[d] = (int)(sad[d] + hsad[d]); } int tsum = 0; for( y = -wsz2-1; y < wsz2; y++ ) tsum += htext[y]; // finally, start the real processing for( y = 0; y < height; y++ ) { int minsad = INT_MAX, mind = -1; hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp; hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp; d = 0; #if CV_SIMD { v_int32 minsad4 = vx_setall_s32(INT_MAX); v_int32 mind4 = vx_setall_s32(0), d4 = d0_4; for( ; d <= ndisp - 2*v_int32::nlanes; d += 2*v_int32::nlanes ) { v_int32 sad4 = vx_load(sad + d) + vx_load(hsad + d) - vx_load(hsad_sub + d); v_store(sad + d, sad4); mind4 = v_select(minsad4 > sad4, d4, mind4); minsad4 = v_min(minsad4, sad4); d4 += dd_4; sad4 = vx_load(sad + d + v_int32::nlanes) + vx_load(hsad + d + v_int32::nlanes) - vx_load(hsad_sub + d + v_int32::nlanes); v_store(sad + d + v_int32::nlanes, sad4); mind4 = v_select(minsad4 > sad4, d4, mind4); minsad4 = v_min(minsad4, sad4); d4 += dd_4; } int CV_DECL_ALIGNED(CV_SIMD_WIDTH) minsad_buf[v_int32::nlanes], mind_buf[v_int32::nlanes]; v_store(minsad_buf, minsad4); v_store(mind_buf, mind4); for (int i = 0; i < v_int32::nlanes; ++i) if(minsad_buf[i] < minsad || (minsad == minsad_buf[i] && mind_buf[i] < mind)) { minsad = minsad_buf[i]; mind = mind_buf[i]; } } #endif for( ; d < ndisp; d++ ) { int currsad = sad[d] + hsad[d] - hsad_sub[d]; sad[d] = currsad; if( currsad < minsad ) { minsad = currsad; mind = d; } } tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; if( tsum < textureThreshold ) { dptr[y*dstep] = FILTERED; continue; } if( uniquenessRatio > 0 ) { int thresh = minsad + (minsad * uniquenessRatio/100); for( d = 0; d < ndisp; d++ ) { if( (d < mind-1 || d > mind+1) && sad[d] <= thresh) break; } if( d < ndisp ) { dptr[y*dstep] = FILTERED; continue; } } { sad[-1] = sad[1]; sad[ndisp] = sad[ndisp-2]; int p = sad[mind+1], n = sad[mind-1]; d = p + n - 2*sad[mind] + std::abs(p - n); dptr[y*dstep] = dispDescale(ndisp - mind - 1 + mindisp, p-n, d); costptr[y*coststep] = sad[mind]; } } } } #ifdef HAVE_OPENCL static bool ocl_prefiltering(InputArray left0, InputArray right0, OutputArray left, OutputArray right, StereoBMParams* state) { if (state->useNormPrefilter()) { if(!ocl_prefilter_norm( left0, left, state->preFilterSize, state->preFilterCap)) return false; if(!ocl_prefilter_norm( right0, right, state->preFilterSize, state->preFilterCap)) return false; } else { if(!ocl_prefilter_xsobel( left0, left, state->preFilterCap )) return false; if(!ocl_prefilter_xsobel( right0, right, state->preFilterCap)) return false; } return true; } #endif struct PrefilterInvoker : public ParallelLoopBody { PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right, const BufferBM &bufX_, const StereoBMParams &state_) : bufX(bufX_), state(state_) { imgs0[0] = &left0; imgs0[1] = &right0; imgs[0] = &left; imgs[1] = &right; } void operator()(const Range& range) const CV_OVERRIDE { for( int i = range.start; i < range.end; i++ ) { if (state.useNormPrefilter()) prefilterNorm( *imgs0[i], *imgs[i], state.preFilterSize, state.preFilterCap, bufX.prefilter[i] ); else prefilterXSobel( *imgs0[i], *imgs[i], state.preFilterCap ); } } const Mat* imgs0[2]; Mat* imgs[2]; const BufferBM &bufX; const StereoBMParams &state; }; #ifdef HAVE_OPENCL static bool ocl_stereobm( InputArray _left, InputArray _right, OutputArray _disp, StereoBMParams* state) { int ndisp = state->numDisparities; int mindisp = state->minDisparity; int wsz = state->SADWindowSize; int wsz2 = wsz/2; ocl::Device devDef = ocl::Device::getDefault(); int sizeX = devDef.isIntel() ? 32 : std::max(11, 27 - devDef.maxComputeUnits()), sizeY = sizeX - 1, N = ndisp * 2; cv::String opt = cv::format("-D DEFINE_KERNEL_STEREOBM -D MIN_DISP=%d -D NUM_DISP=%d" " -D BLOCK_SIZE_X=%d -D BLOCK_SIZE_Y=%d -D WSZ=%d", mindisp, ndisp, sizeX, sizeY, wsz); ocl::Kernel k("stereoBM", ocl::calib3d::stereobm_oclsrc, opt); if(k.empty()) return false; UMat left = _left.getUMat(), right = _right.getUMat(); int cols = left.cols, rows = left.rows; _disp.create(_left.size(), CV_16S); _disp.setTo((mindisp - 1) << 4); Rect roi = Rect(Point(wsz2 + mindisp + ndisp - 1, wsz2), Point(cols-wsz2-mindisp, rows-wsz2) ); UMat disp = (_disp.getUMat())(roi); int globalX = (disp.cols + sizeX - 1) / sizeX, globalY = (disp.rows + sizeY - 1) / sizeY; size_t globalThreads[3] = {(size_t)N, (size_t)globalX, (size_t)globalY}; size_t localThreads[3] = {(size_t)N, 1, 1}; int idx = 0; idx = k.set(idx, ocl::KernelArg::PtrReadOnly(left)); idx = k.set(idx, ocl::KernelArg::PtrReadOnly(right)); idx = k.set(idx, ocl::KernelArg::WriteOnlyNoSize(disp)); idx = k.set(idx, rows); idx = k.set(idx, cols); idx = k.set(idx, state->textureThreshold); idx = k.set(idx, state->uniquenessRatio); return k.run(3, globalThreads, localThreads, false); } #endif struct FindStereoCorrespInvoker : public ParallelLoopBody { FindStereoCorrespInvoker( const Mat& _left, const Mat& _right, Mat& _disp, const StereoBMParams &_state, int _nstripes, Rect _validDisparityRect, Mat& _cost, const BufferBM & buf_ ) : state(_state), buf(buf_) { CV_Assert( _disp.type() == CV_16S || _disp.type() == CV_32S ); left = &_left; right = &_right; disp = &_disp; nstripes = _nstripes; validDisparityRect = _validDisparityRect; cost = &_cost; } void operator()(const Range& range) const CV_OVERRIDE { int cols = left->cols, rows = left->rows; int _row0 = std::min(cvRound(range.start * rows / nstripes), rows); int _row1 = std::min(cvRound(range.end * rows / nstripes), rows); int dispShift = disp->type() == CV_16S ? DISPARITY_SHIFT_16S : DISPARITY_SHIFT_32S; int FILTERED = (state.minDisparity - 1) << dispShift; Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0); if( roi.height == 0 ) return; int row0 = roi.y; int row1 = roi.y + roi.height; Mat part; if( row0 > _row0 ) { part = disp->rowRange(_row0, row0); part = Scalar::all(FILTERED); } if( _row1 > row1 ) { part = disp->rowRange(row1, _row1); part = Scalar::all(FILTERED); } Mat left_i = left->rowRange(row0, row1); Mat right_i = right->rowRange(row0, row1); Mat disp_i = disp->rowRange(row0, row1); Mat cost_i = state.disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat(); #if CV_SIMD if (state.useShorts()) { if( disp_i.type() == CV_16S) findStereoCorrespondenceBM_SIMD( left_i, right_i, disp_i, cost_i, state, row0, rows - row1, buf, range.start ); else findStereoCorrespondenceBM_SIMD( left_i, right_i, disp_i, cost_i, state, row0, rows - row1, buf, range.start); } else #endif { if( disp_i.type() == CV_16S ) findStereoCorrespondenceBM( left_i, right_i, disp_i, cost_i, state, row0, rows - row1, buf, range.start ); else findStereoCorrespondenceBM( left_i, right_i, disp_i, cost_i, state, row0, rows - row1, buf, range.start ); } if( state.disp12MaxDiff >= 0 ) validateDisparity( disp_i, cost_i, state.minDisparity, state.numDisparities, state.disp12MaxDiff ); if( roi.x > 0 ) { part = disp_i.colRange(0, roi.x); part = Scalar::all(FILTERED); } if( roi.x + roi.width < cols ) { part = disp_i.colRange(roi.x + roi.width, cols); part = Scalar::all(FILTERED); } } protected: const Mat *left, *right; Mat* disp, *cost; const StereoBMParams &state; int nstripes; Rect validDisparityRect; const BufferBM & buf; }; class StereoBMImpl CV_FINAL : public StereoBM { public: StereoBMImpl() : params() { // nothing } StereoBMImpl( int _numDisparities, int _SADWindowSize ) : params(_numDisparities, _SADWindowSize) { // nothing } void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr ) CV_OVERRIDE { CV_INSTRUMENT_REGION(); int dtype = disparr.fixedType() ? disparr.type() : params.dispType; Size leftsize = leftarr.size(); if (leftarr.size() != rightarr.size()) CV_Error( Error::StsUnmatchedSizes, "All the images must have the same size" ); if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1) CV_Error( Error::StsUnsupportedFormat, "Both input images must have CV_8UC1" ); if (dtype != CV_16SC1 && dtype != CV_32FC1) CV_Error( Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format" ); if( params.preFilterType != PREFILTER_NORMALIZED_RESPONSE && params.preFilterType != PREFILTER_XSOBEL ) CV_Error( Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE" ); if( params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0 ) CV_Error( Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255" ); if( params.preFilterCap < 1 || params.preFilterCap > 63 ) CV_Error( Error::StsOutOfRange, "preFilterCap must be within 1..63" ); if( params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 || params.SADWindowSize >= std::min(leftsize.width, leftsize.height) ) CV_Error( Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height" ); if( params.numDisparities <= 0 || params.numDisparities % 16 != 0 ) CV_Error( Error::StsOutOfRange, "numDisparities must be positive and divisible by 16" ); if( params.textureThreshold < 0 ) CV_Error( Error::StsOutOfRange, "texture threshold must be non-negative" ); if( params.uniquenessRatio < 0 ) CV_Error( Error::StsOutOfRange, "uniqueness ratio must be non-negative" ); int disp_shift; if (dtype == CV_16SC1) disp_shift = DISPARITY_SHIFT_16S; else disp_shift = DISPARITY_SHIFT_32S; int FILTERED = (params.minDisparity - 1) << disp_shift; #ifdef HAVE_OPENCL if(ocl::isOpenCLActivated() && disparr.isUMat() && params.textureThreshold == 0) { UMat left, right; if(ocl_prefiltering(leftarr, rightarr, left, right, ¶ms)) { if(ocl_stereobm(left, right, disparr, ¶ms)) { disp_shift = DISPARITY_SHIFT_16S; FILTERED = (params.minDisparity - 1) << disp_shift; if (params.useFilterSpeckles()) filterSpeckles(disparr.getMat(), FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf); if (dtype == CV_32F) disparr.getUMat().convertTo(disparr, CV_32FC1, 1./(1 << disp_shift), 0); CV_IMPL_ADD(CV_IMPL_OCL); return; } } } #endif Mat left0 = leftarr.getMat(), right0 = rightarr.getMat(); disparr.create(left0.size(), dtype); Mat disp0 = disparr.getMat(); preFilteredImg0.create( left0.size(), CV_8U ); preFilteredImg1.create( left0.size(), CV_8U ); cost.create( left0.size(), CV_16S ); Mat left = preFilteredImg0, right = preFilteredImg1; int mindisp = params.minDisparity; int ndisp = params.numDisparities; int width = left0.cols; int height = left0.rows; int lofs = std::max(ndisp - 1 + mindisp, 0); int rofs = -std::min(ndisp - 1 + mindisp, 0); int width1 = width - rofs - ndisp + 1; if( lofs >= width || rofs >= width || width1 < 1 ) { disp0 = Scalar::all( FILTERED * ( disp0.type() < CV_32F ? 1 : 1./(1 << disp_shift) ) ); return; } Mat disp = disp0; if( dtype == CV_32F ) { dispbuf.create(disp0.size(), CV_32S); disp = dispbuf; } { const double SAD_overhead_coeff = 10.0; const double N0 = 8000000 / (params.useShorts() ? 1 : 4); // approx tbb's min number instructions reasonable for one thread const double maxStripeSize = std::min( std::max( N0 / (width * ndisp), (params.SADWindowSize-1) * SAD_overhead_coeff ), (double)height ); const int nstripes = cvCeil(height / maxStripeSize); BufferBM localBuf(nstripes, width, height, params); // Prefiltering parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, localBuf, params), 1); Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2; validDisparityRect = getValidDisparityROI(!R1.empty() ? R1 : validDisparityRect, !R2.empty() ? R2 : validDisparityRect, params.minDisparity, params.numDisparities, params.SADWindowSize); FindStereoCorrespInvoker invoker(left, right, disp, params, nstripes, validDisparityRect, cost, localBuf); parallel_for_(Range(0, nstripes), invoker); if (params.useFilterSpeckles()) { slidingSumBuf.create( 1, width * height * (sizeof(Point_) + sizeof(int) + sizeof(uchar)), CV_8U ); filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf); } } if (disp0.data != disp.data) disp.convertTo(disp0, disp0.type(), 1./(1 << disp_shift), 0); } int getMinDisparity() const CV_OVERRIDE { return params.minDisparity; } void setMinDisparity(int minDisparity) CV_OVERRIDE { params.minDisparity = minDisparity; } int getNumDisparities() const CV_OVERRIDE { return params.numDisparities; } void setNumDisparities(int numDisparities) CV_OVERRIDE { params.numDisparities = numDisparities; } int getBlockSize() const CV_OVERRIDE { return params.SADWindowSize; } void setBlockSize(int blockSize) CV_OVERRIDE { params.SADWindowSize = blockSize; } int getSpeckleWindowSize() const CV_OVERRIDE { return params.speckleWindowSize; } void setSpeckleWindowSize(int speckleWindowSize) CV_OVERRIDE { params.speckleWindowSize = speckleWindowSize; } int getSpeckleRange() const CV_OVERRIDE { return params.speckleRange; } void setSpeckleRange(int speckleRange) CV_OVERRIDE { params.speckleRange = speckleRange; } int getDisp12MaxDiff() const CV_OVERRIDE { return params.disp12MaxDiff; } void setDisp12MaxDiff(int disp12MaxDiff) CV_OVERRIDE { params.disp12MaxDiff = disp12MaxDiff; } int getPreFilterType() const CV_OVERRIDE { return params.preFilterType; } void setPreFilterType(int preFilterType) CV_OVERRIDE { params.preFilterType = preFilterType; } int getPreFilterSize() const CV_OVERRIDE { return params.preFilterSize; } void setPreFilterSize(int preFilterSize) CV_OVERRIDE { params.preFilterSize = preFilterSize; } int getPreFilterCap() const CV_OVERRIDE { return params.preFilterCap; } void setPreFilterCap(int preFilterCap) CV_OVERRIDE { params.preFilterCap = preFilterCap; } int getTextureThreshold() const CV_OVERRIDE { return params.textureThreshold; } void setTextureThreshold(int textureThreshold) CV_OVERRIDE { params.textureThreshold = textureThreshold; } int getUniquenessRatio() const CV_OVERRIDE { return params.uniquenessRatio; } void setUniquenessRatio(int uniquenessRatio) CV_OVERRIDE { params.uniquenessRatio = uniquenessRatio; } int getSmallerBlockSize() const CV_OVERRIDE { return 0; } void setSmallerBlockSize(int) CV_OVERRIDE {} Rect getROI1() const CV_OVERRIDE { return params.roi1; } void setROI1(Rect roi1) CV_OVERRIDE { params.roi1 = roi1; } Rect getROI2() const CV_OVERRIDE { return params.roi2; } void setROI2(Rect roi2) CV_OVERRIDE { params.roi2 = roi2; } void write(FileStorage& fs) const CV_OVERRIDE { writeFormat(fs); fs << "name" << name_ << "minDisparity" << params.minDisparity << "numDisparities" << params.numDisparities << "blockSize" << params.SADWindowSize << "speckleWindowSize" << params.speckleWindowSize << "speckleRange" << params.speckleRange << "disp12MaxDiff" << params.disp12MaxDiff << "preFilterType" << params.preFilterType << "preFilterSize" << params.preFilterSize << "preFilterCap" << params.preFilterCap << "textureThreshold" << params.textureThreshold << "uniquenessRatio" << params.uniquenessRatio; } void read(const FileNode& fn) CV_OVERRIDE { FileNode n = fn["name"]; CV_Assert( n.isString() && String(n) == name_ ); params.minDisparity = (int)fn["minDisparity"]; params.numDisparities = (int)fn["numDisparities"]; params.SADWindowSize = (int)fn["blockSize"]; params.speckleWindowSize = (int)fn["speckleWindowSize"]; params.speckleRange = (int)fn["speckleRange"]; params.disp12MaxDiff = (int)fn["disp12MaxDiff"]; params.preFilterType = (int)fn["preFilterType"]; params.preFilterSize = (int)fn["preFilterSize"]; params.preFilterCap = (int)fn["preFilterCap"]; params.textureThreshold = (int)fn["textureThreshold"]; params.uniquenessRatio = (int)fn["uniquenessRatio"]; params.roi1 = params.roi2 = Rect(); } StereoBMParams params; Mat preFilteredImg0, preFilteredImg1, cost, dispbuf; Mat slidingSumBuf; static const char* name_; }; const char* StereoBMImpl::name_ = "StereoMatcher.BM"; Ptr StereoBM::create(int _numDisparities, int _SADWindowSize) { return makePtr(_numDisparities, _SADWindowSize); } } /* End of file. */