/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifdef ENABLE_TORCH_IMPORTER #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include namespace cvtest { using namespace std; using namespace testing; using namespace cv; using namespace cv::dnn; template static std::string _tf(TStr filename, bool inTorchDir = true) { String path = "dnn/"; if (inTorchDir) path += "torch/"; path += filename; return findDataFile(path, false); } TEST(Torch_Importer, simple_read) { Net net; ASSERT_NO_THROW(net = readNetFromTorch(_tf("net_simple_net.txt"), false)); ASSERT_FALSE(net.empty()); } static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String outLayerName = "", bool check2ndBlob = false, bool isBinary = false) { String suffix = (isBinary) ? ".dat" : ".txt"; Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); Mat inp, outRef; ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) ); ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) ); if (outLayerName.empty()) outLayerName = net.getLayerNames().back(); net.setInput(inp, "0"); std::vector outBlobs; net.forward(outBlobs, outLayerName); normAssert(outRef, outBlobs[0]); if (check2ndBlob) { Mat out2 = outBlobs[1]; Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary); normAssert(out2, ref2); } } TEST(Torch_Importer, run_convolution) { runTorchNet("net_conv"); } OCL_TEST(Torch_Importer, run_convolution) { runTorchNet("net_conv", DNN_TARGET_OPENCL); } TEST(Torch_Importer, run_pool_max) { runTorchNet("net_pool_max", DNN_TARGET_CPU, "", true); } OCL_TEST(Torch_Importer, run_pool_max) { runTorchNet("net_pool_max", DNN_TARGET_OPENCL, "", true); } TEST(Torch_Importer, run_pool_ave) { runTorchNet("net_pool_ave"); } OCL_TEST(Torch_Importer, run_pool_ave) { runTorchNet("net_pool_ave", DNN_TARGET_OPENCL); } TEST(Torch_Importer, run_reshape) { runTorchNet("net_reshape"); runTorchNet("net_reshape_batch"); runTorchNet("net_reshape_single_sample"); runTorchNet("net_reshape_channels", DNN_TARGET_CPU, "", false, true); } TEST(Torch_Importer, run_linear) { runTorchNet("net_linear_2d"); } TEST(Torch_Importer, run_paralel) { runTorchNet("net_parallel", DNN_TARGET_CPU, "l5_torchMerge"); } TEST(Torch_Importer, run_concat) { runTorchNet("net_concat", DNN_TARGET_CPU, "l5_torchMerge"); runTorchNet("net_depth_concat", DNN_TARGET_CPU, "", false, true); } OCL_TEST(Torch_Importer, run_concat) { runTorchNet("net_concat", DNN_TARGET_OPENCL, "l5_torchMerge"); runTorchNet("net_depth_concat", DNN_TARGET_OPENCL, "", false, true); } TEST(Torch_Importer, run_deconv) { runTorchNet("net_deconv"); } TEST(Torch_Importer, run_batch_norm) { runTorchNet("net_batch_norm"); } TEST(Torch_Importer, net_prelu) { runTorchNet("net_prelu"); } TEST(Torch_Importer, net_cadd_table) { runTorchNet("net_cadd_table"); } TEST(Torch_Importer, net_softmax) { runTorchNet("net_softmax"); runTorchNet("net_softmax_spatial"); } OCL_TEST(Torch_Importer, net_softmax) { runTorchNet("net_softmax", DNN_TARGET_OPENCL); runTorchNet("net_softmax_spatial", DNN_TARGET_OPENCL); } TEST(Torch_Importer, net_logsoftmax) { runTorchNet("net_logsoftmax"); runTorchNet("net_logsoftmax_spatial"); } OCL_TEST(Torch_Importer, net_logsoftmax) { runTorchNet("net_logsoftmax", DNN_TARGET_OPENCL); runTorchNet("net_logsoftmax_spatial", DNN_TARGET_OPENCL); } TEST(Torch_Importer, net_lp_pooling) { runTorchNet("net_lp_pooling_square", DNN_TARGET_CPU, "", false, true); runTorchNet("net_lp_pooling_power", DNN_TARGET_CPU, "", false, true); } TEST(Torch_Importer, net_conv_gemm_lrn) { runTorchNet("net_conv_gemm_lrn", DNN_TARGET_CPU, "", false, true); } TEST(Torch_Importer, net_inception_block) { runTorchNet("net_inception_block", DNN_TARGET_CPU, "", false, true); } TEST(Torch_Importer, net_normalize) { runTorchNet("net_normalize", DNN_TARGET_CPU, "", false, true); } TEST(Torch_Importer, net_padding) { runTorchNet("net_padding", DNN_TARGET_CPU, "", false, true); runTorchNet("net_spatial_zero_padding", DNN_TARGET_CPU, "", false, true); } TEST(Torch_Importer, ENet_accuracy) { Net net; { const string model = findDataFile("dnn/Enet-model-best.net", false); net = readNetFromTorch(model, true); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("street.png", false)); Mat inputBlob = blobFromImage(sample, 1./255); net.setInput(inputBlob, ""); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false)); // Due to numerical instability in Pooling-Unpooling layers (indexes jittering) // thresholds for ENet must be changed. Accuracy of resuults was checked on // Cityscapes dataset and difference in mIOU with Torch is 10E-4% normAssert(ref, out, "", 0.00044, 0.44); const int N = 3; for (int i = 0; i < N; i++) { net.setInput(inputBlob, ""); Mat out = net.forward(); normAssert(ref, out, "", 0.00044, 0.44); } } TEST(Torch_Importer, OpenFace_accuracy) { const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); Net net = readNetFromTorch(model); Mat sample = imread(findDataFile("cv/shared/lena.png", false)); Mat sampleF32(sample.size(), CV_32FC3); sample.convertTo(sampleF32, sampleF32.type()); sampleF32 /= 255; resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); Mat inputBlob = blobFromImage(sampleF32); net.setInput(inputBlob); Mat out = net.forward(); Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); normAssert(out, outRef); } OCL_TEST(Torch_Importer, OpenFace_accuracy) { const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); Net net = readNetFromTorch(model); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); Mat sample = imread(findDataFile("cv/shared/lena.png", false)); Mat sampleF32(sample.size(), CV_32FC3); sample.convertTo(sampleF32, sampleF32.type()); sampleF32 /= 255; resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); Mat inputBlob = blobFromImage(sampleF32); net.setInput(inputBlob); Mat out = net.forward(); Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); normAssert(out, outRef); } OCL_TEST(Torch_Importer, ENet_accuracy) { Net net; { const string model = findDataFile("dnn/Enet-model-best.net", false); Ptr importer = createTorchImporter(model, true); ASSERT_TRUE(importer != NULL); importer->populateNet(net); } net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); Mat sample = imread(_tf("street.png", false)); Mat inputBlob = blobFromImage(sample, 1./255); net.setInput(inputBlob, ""); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false)); // Due to numerical instability in Pooling-Unpooling layers (indexes jittering) // thresholds for ENet must be changed. Accuracy of resuults was checked on // Cityscapes dataset and difference in mIOU with Torch is 10E-4% normAssert(ref, out, "", 0.00044, 0.44); const int N = 3; for (int i = 0; i < N; i++) { net.setInput(inputBlob, ""); Mat out = net.forward(); normAssert(ref, out, "", 0.00044, 0.44); } } } #endif