/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/hal/intrin.hpp" #include namespace cv { /* NOTE: * * Sobel-x: -1 0 1 * -2 0 2 * -1 0 1 * * Sobel-y: -1 -2 -1 * 0 0 0 * 1 2 1 */ template static inline void spatialGradientKernel( T& vx, T& vy, const T& v00, const T& v01, const T& v02, const T& v10, const T& v12, const T& v20, const T& v21, const T& v22 ) { // vx = (v22 - v00) + (v02 - v20) + 2 * (v12 - v10) // vy = (v22 - v00) + (v20 - v02) + 2 * (v21 - v01) T tmp_add = v22 - v00, tmp_sub = v02 - v20, tmp_x = v12 - v10, tmp_y = v21 - v01; vx = tmp_add + tmp_sub + tmp_x + tmp_x; vy = tmp_add - tmp_sub + tmp_y + tmp_y; } void spatialGradient( InputArray _src, OutputArray _dx, OutputArray _dy, int ksize, int borderType ) { CV_INSTRUMENT_REGION(); // Prepare InputArray src Mat src = _src.getMat(); CV_Assert( !src.empty() ); CV_Assert( src.type() == CV_8UC1 ); CV_Assert( borderType == BORDER_DEFAULT || borderType == BORDER_REPLICATE ); // Prepare OutputArrays dx, dy _dx.create( src.size(), CV_16SC1 ); _dy.create( src.size(), CV_16SC1 ); Mat dx = _dx.getMat(), dy = _dy.getMat(); // TODO: Allow for other kernel sizes CV_Assert(ksize == 3); // Get dimensions const int H = src.rows, W = src.cols; // Row, column indices int i = 0, j = 0; // Handle border types int i_top = 0, // Case for H == 1 && W == 1 && BORDER_REPLICATE i_bottom = H - 1, j_offl = 0, // j offset from 0th pixel to reach -1st pixel j_offr = 0; // j offset from W-1th pixel to reach Wth pixel if ( borderType == BORDER_DEFAULT ) // Equiv. to BORDER_REFLECT_101 { if ( H > 1 ) { i_top = 1; i_bottom = H - 2; } if ( W > 1 ) { j_offl = 1; j_offr = -1; } } int i_start = 0; int j_start = 0; #if CV_SIMD // Characters in variable names have the following meanings: // u: unsigned char // s: signed int // // [row][column] // m: offset -1 // n: offset 0 // p: offset 1 // Example: umn is offset -1 in row and offset 0 in column for ( i = 0; i < H - 1; i += 2 ) { uchar *p_src = src.ptr(i == 0 ? i_top : i - 1); uchar *c_src = src.ptr(i); uchar *n_src = src.ptr(i+1); uchar *m_src = src.ptr(i == H - 2 ? i_bottom : i + 2); short *c_dx = dx.ptr(i); short *c_dy = dy.ptr(i); short *n_dx = dx.ptr(i+1); short *n_dy = dy.ptr(i+1); // Process rest of columns 16-column chunks at a time for ( j = 1; j < W - v_uint8::nlanes; j += v_uint8::nlanes) { // Load top row for 3x3 Sobel filter v_uint8 v_um = vx_load(&p_src[j-1]); v_uint8 v_un = vx_load(&p_src[j]); v_uint8 v_up = vx_load(&p_src[j+1]); v_uint16 v_um1, v_um2, v_un1, v_un2, v_up1, v_up2; v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_int16 v_s1m1 = v_reinterpret_as_s16(v_um1); v_int16 v_s1m2 = v_reinterpret_as_s16(v_um2); v_int16 v_s1n1 = v_reinterpret_as_s16(v_un1); v_int16 v_s1n2 = v_reinterpret_as_s16(v_un2); v_int16 v_s1p1 = v_reinterpret_as_s16(v_up1); v_int16 v_s1p2 = v_reinterpret_as_s16(v_up2); // Load second row for 3x3 Sobel filter v_um = vx_load(&c_src[j-1]); v_un = vx_load(&c_src[j]); v_up = vx_load(&c_src[j+1]); v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_int16 v_s2m1 = v_reinterpret_as_s16(v_um1); v_int16 v_s2m2 = v_reinterpret_as_s16(v_um2); v_int16 v_s2n1 = v_reinterpret_as_s16(v_un1); v_int16 v_s2n2 = v_reinterpret_as_s16(v_un2); v_int16 v_s2p1 = v_reinterpret_as_s16(v_up1); v_int16 v_s2p2 = v_reinterpret_as_s16(v_up2); // Load third row for 3x3 Sobel filter v_um = vx_load(&n_src[j-1]); v_un = vx_load(&n_src[j]); v_up = vx_load(&n_src[j+1]); v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_int16 v_s3m1 = v_reinterpret_as_s16(v_um1); v_int16 v_s3m2 = v_reinterpret_as_s16(v_um2); v_int16 v_s3n1 = v_reinterpret_as_s16(v_un1); v_int16 v_s3n2 = v_reinterpret_as_s16(v_un2); v_int16 v_s3p1 = v_reinterpret_as_s16(v_up1); v_int16 v_s3p2 = v_reinterpret_as_s16(v_up2); // dx & dy for rows 1, 2, 3 v_int16 v_sdx1, v_sdy1; spatialGradientKernel( v_sdx1, v_sdy1, v_s1m1, v_s1n1, v_s1p1, v_s2m1, v_s2p1, v_s3m1, v_s3n1, v_s3p1 ); v_int16 v_sdx2, v_sdy2; spatialGradientKernel( v_sdx2, v_sdy2, v_s1m2, v_s1n2, v_s1p2, v_s2m2, v_s2p2, v_s3m2, v_s3n2, v_s3p2 ); // Store v_store(&c_dx[j], v_sdx1); v_store(&c_dx[j+v_int16::nlanes], v_sdx2); v_store(&c_dy[j], v_sdy1); v_store(&c_dy[j+v_int16::nlanes], v_sdy2); // Load fourth row for 3x3 Sobel filter v_um = vx_load(&m_src[j-1]); v_un = vx_load(&m_src[j]); v_up = vx_load(&m_src[j+1]); v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_int16 v_s4m1 = v_reinterpret_as_s16(v_um1); v_int16 v_s4m2 = v_reinterpret_as_s16(v_um2); v_int16 v_s4n1 = v_reinterpret_as_s16(v_un1); v_int16 v_s4n2 = v_reinterpret_as_s16(v_un2); v_int16 v_s4p1 = v_reinterpret_as_s16(v_up1); v_int16 v_s4p2 = v_reinterpret_as_s16(v_up2); // dx & dy for rows 2, 3, 4 spatialGradientKernel( v_sdx1, v_sdy1, v_s2m1, v_s2n1, v_s2p1, v_s3m1, v_s3p1, v_s4m1, v_s4n1, v_s4p1 ); spatialGradientKernel( v_sdx2, v_sdy2, v_s2m2, v_s2n2, v_s2p2, v_s3m2, v_s3p2, v_s4m2, v_s4n2, v_s4p2 ); // Store v_store(&n_dx[j], v_sdx1); v_store(&n_dx[j+v_int16::nlanes], v_sdx2); v_store(&n_dy[j], v_sdy1); v_store(&n_dy[j+v_int16::nlanes], v_sdy2); } } i_start = i; j_start = j; #endif int j_p, j_n; uchar v00, v01, v02, v10, v11, v12, v20, v21, v22; for ( i = 0; i < H; i++ ) { uchar *p_src = src.ptr(i == 0 ? i_top : i - 1); uchar *c_src = src.ptr(i); uchar *n_src = src.ptr(i == H - 1 ? i_bottom : i + 1); short *c_dx = dx.ptr(i); short *c_dy = dy.ptr(i); // Process left-most column j = 0; j_p = j + j_offl; j_n = 1; if ( j_n >= W ) j_n = j + j_offr; v00 = p_src[j_p]; v01 = p_src[j]; v02 = p_src[j_n]; v10 = c_src[j_p]; v11 = c_src[j]; v12 = c_src[j_n]; v20 = n_src[j_p]; v21 = n_src[j]; v22 = n_src[j_n]; spatialGradientKernel( c_dx[0], c_dy[0], v00, v01, v02, v10, v12, v20, v21, v22 ); v00 = v01; v10 = v11; v20 = v21; v01 = v02; v11 = v12; v21 = v22; // Process middle columns j = i >= i_start ? 1 : j_start; j_p = j - 1; v00 = p_src[j_p]; v01 = p_src[j]; v10 = c_src[j_p]; v11 = c_src[j]; v20 = n_src[j_p]; v21 = n_src[j]; for ( ; j < W - 1; j++ ) { // Get values for next column j_n = j + 1; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n]; spatialGradientKernel( c_dx[j], c_dy[j], v00, v01, v02, v10, v12, v20, v21, v22 ); // Move values back one column for next iteration v00 = v01; v10 = v11; v20 = v21; v01 = v02; v11 = v12; v21 = v22; } // Process right-most column if ( j < W ) { j_n = j + j_offr; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n]; spatialGradientKernel( c_dx[j], c_dy[j], v00, v01, v02, v10, v12, v20, v21, v22 ); } } } }