#include #include // cvFindContours #include #include #include #include #include #include #include // Function prototypes void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector& chain, double f); std::vector maskFromTemplate(const std::vector& templates, int num_modalities, cv::Point offset, cv::Size size, cv::Mat& mask, cv::Mat& dst); void templateConvexHull(const std::vector& templates, int num_modalities, cv::Point offset, cv::Size size, cv::Mat& dst); void drawResponse(const std::vector& templates, int num_modalities, cv::Mat& dst, cv::Point offset, int T); cv::Mat displayQuantized(const cv::Mat& quantized); // Copy of cv_mouse from cv_utilities class Mouse { public: static void start(const std::string& a_img_name) { cvSetMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0); } static int event(void) { int l_event = m_event; m_event = -1; return l_event; } static int x(void) { return m_x; } static int y(void) { return m_y; } private: static void cv_on_mouse(int a_event, int a_x, int a_y, int a_flags, void * a_params) { m_event = a_event; m_x = a_x; m_y = a_y; } static int m_event; static int m_x; static int m_y; }; int Mouse::m_event; int Mouse::m_x; int Mouse::m_y; void help() { printf("Usage: openni_demo [templates.yml]\n\n" "Place your object on a planar, featureless surface. With the mouse,\n" "frame it in the 'color' window and right click to learn a first template.\n" "Then press 'l' to enter online learning mode, and move the camera around.\n" "When the match score falls between 90-95%% the demo will add a new template.\n\n" "Keys:\n" "\t h -- This help page\n" "\t l -- Toggle online learning\n" "\t m -- Toggle printing match result\n" "\t t -- Toggle printing timings\n" "\t w -- Write learned templates to disk\n" "\t [ ] -- Adjust matching threshold: '[' down, ']' up\n" "\t q -- Quit\n\n"); } // Adapted from cv_timer in cv_utilities class Timer { public: Timer() : start_(0), time_(0) {} void start() { start_ = cv::getTickCount(); } void stop() { CV_Assert(start_ != 0); int64 end = cv::getTickCount(); time_ += end - start_; start_ = 0; } double time() { double ret = time_ / cv::getTickFrequency(); time_ = 0; return ret; } private: int64 start_, time_; }; // Functions to store detector and templates in single XML/YAML file cv::Ptr readLinemod(const std::string& filename) { cv::Ptr detector = new cv::linemod::Detector; cv::FileStorage fs(filename, cv::FileStorage::READ); detector->read(fs.root()); cv::FileNode fn = fs["classes"]; for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i) detector->readClass(*i); return detector; } void writeLinemod(const cv::Ptr& detector, const std::string& filename) { cv::FileStorage fs(filename, cv::FileStorage::WRITE); detector->write(fs); std::vector ids = detector->classIds(); fs << "classes" << "["; for (int i = 0; i < (int)ids.size(); ++i) { fs << "{"; detector->writeClass(ids[i], fs); fs << "}"; // current class } fs << "]"; // classes } int main(int argc, char * argv[]) { // Various settings and flags bool show_match_result = true; bool show_timings = false; bool learn_online = false; int num_classes = 0; int matching_threshold = 80; /// @todo Keys for changing these? cv::Size roi_size(200, 200); int learning_lower_bound = 90; int learning_upper_bound = 95; // Timers Timer extract_timer; Timer match_timer; // Initialize HighGUI help(); cv::namedWindow("color"); cv::namedWindow("normals"); Mouse::start("color"); // Initialize LINEMOD data structures cv::Ptr detector; std::string filename; if (argc == 1) { filename = "linemod_templates.yml"; detector = cv::linemod::getDefaultLINEMOD(); } else { detector = readLinemod(argv[1]); std::vector ids = detector->classIds(); num_classes = detector->numClasses(); printf("Loaded %s with %d classes and %d templates\n", argv[1], num_classes, detector->numTemplates()); if (!ids.empty()) { printf("Class ids:\n"); std::copy(ids.begin(), ids.end(), std::ostream_iterator(std::cout, "\n")); } } int num_modalities = detector->getModalities().size(); // Open Kinect sensor cv::VideoCapture capture( CV_CAP_OPENNI ); if (!capture.isOpened()) { printf("Could not open OpenNI-capable sensor\n"); return -1; } capture.set(CV_CAP_PROP_OPENNI_REGISTRATION, 1); double focal_length = capture.get(CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH); //printf("Focal length = %f\n", focal_length); // Main loop cv::Mat color, depth; while (true) { // Capture next color/depth pair capture.grab(); capture.retrieve(depth, CV_CAP_OPENNI_DEPTH_MAP); capture.retrieve(color, CV_CAP_OPENNI_BGR_IMAGE); std::vector sources; sources.push_back(color); sources.push_back(depth); cv::Mat display = color.clone(); if (!learn_online) { cv::Point mouse(Mouse::x(), Mouse::y()); int event = Mouse::event(); // Compute ROI centered on current mouse location cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2); cv::Point pt1 = mouse - roi_offset; // top left cv::Point pt2 = mouse + roi_offset; // bottom right if (event == CV_EVENT_RBUTTONDOWN) { // Compute object mask by subtracting the plane within the ROI std::vector chain(4); chain[0] = pt1; chain[1] = cv::Point(pt2.x, pt1.y); chain[2] = pt2; chain[3] = cv::Point(pt1.x, pt2.y); cv::Mat mask; subtractPlane(depth, mask, chain, focal_length); cv::imshow("mask", mask); // Extract template std::string class_id = cv::format("class%d", num_classes); cv::Rect bb; extract_timer.start(); int template_id = detector->addTemplate(sources, class_id, mask, &bb); extract_timer.stop(); if (template_id != -1) { printf("*** Added template (id %d) for new object class %d***\n", template_id, num_classes); //printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height); } ++num_classes; } // Draw ROI for display cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3); cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1); } // Perform matching std::vector matches; std::vector class_ids; std::vector quantized_images; match_timer.start(); detector->match(sources, matching_threshold, matches, class_ids, quantized_images); match_timer.stop(); int classes_visited = 0; std::set visited; for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i) { cv::linemod::Match m = matches[i]; if (visited.insert(m.class_id).second) { ++classes_visited; if (show_match_result) { printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n", m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id); } // Draw matching template const std::vector& templates = detector->getTemplates(m.class_id, m.template_id); drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0)); if (learn_online == true) { /// @todo Online learning possibly broken by new gradient feature extraction, /// which assumes an accurate object outline. // Compute masks based on convex hull of matched template cv::Mat color_mask, depth_mask; std::vector chain = maskFromTemplate(templates, num_modalities, cv::Point(m.x, m.y), color.size(), color_mask, display); subtractPlane(depth, depth_mask, chain, focal_length); cv::imshow("mask", depth_mask); // If pretty sure (but not TOO sure), add new template if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound) { extract_timer.start(); int template_id = detector->addTemplate(sources, m.class_id, depth_mask); extract_timer.stop(); if (template_id != -1) { printf("*** Added template (id %d) for existing object class %s***\n", template_id, m.class_id.c_str()); } } } } } if (show_match_result && matches.empty()) printf("No matches found...\n"); if (show_timings) { printf("Training: %.2fs\n", extract_timer.time()); printf("Matching: %.2fs\n", match_timer.time()); } if (show_match_result || show_timings) printf("------------------------------------------------------------\n"); cv::imshow("color", display); cv::imshow("normals", quantized_images[1]); cv::FileStorage fs; char key = (char)cvWaitKey(10); switch (key) { case 'h': help(); break; case 'm': // toggle printing match result show_match_result = !show_match_result; printf("Show match result %s\n", show_match_result ? "ON" : "OFF"); break; case 't': // toggle printing timings show_timings = !show_timings; printf("Show timings %s\n", show_timings ? "ON" : "OFF"); break; case 'l': // toggle online learning learn_online = !learn_online; printf("Online learning %s\n", learn_online ? "ON" : "OFF"); break; case '[': // decrement threshold matching_threshold = std::max(matching_threshold - 1, -100); printf("New threshold: %d\n", matching_threshold); break; case ']': // increment threshold matching_threshold = std::min(matching_threshold + 1, +100); printf("New threshold: %d\n", matching_threshold); break; case 'w': // write model to disk writeLinemod(detector, filename); printf("Wrote detector and templates to %s\n", filename.c_str()); break; case 'q': return 0; } } return 0; } void reprojectPoints(const std::vector& proj, std::vector& real, double f) { real.resize(proj.size()); double f_inv = 1.0 / f; for (int i = 0; i < (int)proj.size(); ++i) { double Z = proj[i].z; real[i].x = (proj[i].x - 320.) * (f_inv * Z); real[i].y = (proj[i].y - 240.) * (f_inv * Z); real[i].z = Z; } } void filterPlane(IplImage * ap_depth, std::vector & a_masks, std::vector & a_chain, double f) { const int l_num_cost_pts = 200; float l_thres = 4; IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1); cvSet(lp_mask, cvRealScalar(0)); std::vector l_chain_vector; float l_chain_length = 0; float * lp_seg_length = new float[a_chain.size()]; for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i) { float x_diff = a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x; float y_diff = a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y; lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff); l_chain_length += lp_seg_length[l_i]; } for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i) { if (lp_seg_length[l_i] > 0) { int l_cur_num = l_num_cost_pts * lp_seg_length[l_i] / l_chain_length; float l_cur_len = lp_seg_length[l_i] / l_cur_num; for (int l_j = 0; l_j < l_cur_num; ++l_j) { float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]); CvPoint l_pts; l_pts.x = l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x; l_pts.y = l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y; l_chain_vector.push_back(l_pts); } } } std::vector lp_src_3Dpts(l_chain_vector.size()); for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i) { lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x; lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y; lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x)); //CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255; } //cv_show_image(lp_mask,"hallo2"); reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f); CvMat * lp_pts = cvCreateMat(l_chain_vector.size(), 4, CV_32F); CvMat * lp_v = cvCreateMat(4, 4, CV_32F); CvMat * lp_w = cvCreateMat(4, 1, CV_32F); for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i) { CV_MAT_ELEM(*lp_pts, float, l_i, 0) = lp_src_3Dpts[l_i].x; CV_MAT_ELEM(*lp_pts, float, l_i, 1) = lp_src_3Dpts[l_i].y; CV_MAT_ELEM(*lp_pts, float, l_i, 2) = lp_src_3Dpts[l_i].z; CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0; } cvSVD(lp_pts, lp_w, 0, lp_v); float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3), CV_MAT_ELEM(*lp_v, float, 1, 3), CV_MAT_ELEM(*lp_v, float, 2, 3), CV_MAT_ELEM(*lp_v, float, 3, 3)}; float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]); l_n[0] /= l_norm; l_n[1] /= l_norm; l_n[2] /= l_norm; l_n[3] /= l_norm; float l_max_dist = 0; for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i) { float l_dist = l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) + l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) + l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) + l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3); if (fabs(l_dist) > l_max_dist) l_max_dist = l_dist; } //std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl; int l_minx = ap_depth->width; int l_miny = ap_depth->height; int l_maxx = 0; int l_maxy = 0; for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i) { l_minx = std::min(l_minx, a_chain[l_i].x); l_miny = std::min(l_miny, a_chain[l_i].y); l_maxx = std::max(l_maxx, a_chain[l_i].x); l_maxy = std::max(l_maxy, a_chain[l_i].y); } int l_w = l_maxx - l_minx + 1; int l_h = l_maxy - l_miny + 1; int l_nn = a_chain.size(); CvPoint * lp_chain = new CvPoint[l_nn]; for (int l_i = 0; l_i < l_nn; ++l_i) lp_chain[l_i] = a_chain[l_i]; cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255)); delete[] lp_chain; //cv_show_image(lp_mask,"hallo1"); std::vector lp_dst_3Dpts(l_h * l_w); int l_ind = 0; for (int l_r = 0; l_r < l_h; ++l_r) { for (int l_c = 0; l_c < l_w; ++l_c) { lp_dst_3Dpts[l_ind].x = l_c + l_minx; lp_dst_3Dpts[l_ind].y = l_r + l_miny; lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx); ++l_ind; } } reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f); l_ind = 0; for (int l_r = 0; l_r < l_h; ++l_r) { for (int l_c = 0; l_c < l_w; ++l_c) { float l_dist = l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]; ++l_ind; if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0) { if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f))) { for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p) { int l_col = (l_c + l_minx) / (l_p + 1.0); int l_row = (l_r + l_miny) / (l_p + 1.0); CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0; } } else { for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p) { int l_col = (l_c + l_minx) / (l_p + 1.0); int l_row = (l_r + l_miny) / (l_p + 1.0); CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255; } } } } } cvReleaseImage(&lp_mask); cvReleaseMat(&lp_pts); cvReleaseMat(&lp_w); cvReleaseMat(&lp_v); } void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector& chain, double f) { mask = cv::Mat::zeros(depth.size(), CV_8U); std::vector tmp; IplImage mask_ipl = mask; tmp.push_back(&mask_ipl); IplImage depth_ipl = depth; filterPlane(&depth_ipl, tmp, chain, f); } std::vector maskFromTemplate(const std::vector& templates, int num_modalities, cv::Point offset, cv::Size size, cv::Mat& mask, cv::Mat& dst) { templateConvexHull(templates, num_modalities, offset, size, mask); const int OFFSET = 30; cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET); CvMemStorage * lp_storage = cvCreateMemStorage(0); CvTreeNodeIterator l_iterator; CvSeqReader l_reader; CvSeq * lp_contour = 0; cv::Mat mask_copy = mask.clone(); IplImage mask_copy_ipl = mask_copy; cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE); std::vector l_pts1; // to use as input to cv_primesensor::filter_plane cvInitTreeNodeIterator(&l_iterator, lp_contour, 1); while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0) { CvPoint l_pt0; cvStartReadSeq(lp_contour, &l_reader, 0); CV_READ_SEQ_ELEM(l_pt0, l_reader); l_pts1.push_back(l_pt0); for (int i = 0; i < lp_contour->total; ++i) { CvPoint l_pt1; CV_READ_SEQ_ELEM(l_pt1, l_reader); /// @todo Really need dst at all? Can just as well do this outside cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2); l_pt0 = l_pt1; l_pts1.push_back(l_pt0); } } cvReleaseMemStorage(&lp_storage); return l_pts1; } // Adapted from cv_show_angles cv::Mat displayQuantized(const cv::Mat& quantized) { cv::Mat color(quantized.size(), CV_8UC3); for (int r = 0; r < quantized.rows; ++r) { const uchar* quant_r = quantized.ptr(r); cv::Vec3b* color_r = color.ptr(r); for (int c = 0; c < quantized.cols; ++c) { cv::Vec3b& bgr = color_r[c]; switch (quant_r[c]) { case 0: bgr[0]= 0; bgr[1]= 0; bgr[2]= 0; break; case 1: bgr[0]= 55; bgr[1]= 55; bgr[2]= 55; break; case 2: bgr[0]= 80; bgr[1]= 80; bgr[2]= 80; break; case 4: bgr[0]=105; bgr[1]=105; bgr[2]=105; break; case 8: bgr[0]=130; bgr[1]=130; bgr[2]=130; break; case 16: bgr[0]=155; bgr[1]=155; bgr[2]=155; break; case 32: bgr[0]=180; bgr[1]=180; bgr[2]=180; break; case 64: bgr[0]=205; bgr[1]=205; bgr[2]=205; break; case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230; break; case 255: bgr[0]= 0; bgr[1]= 0; bgr[2]=255; break; default: bgr[0]= 0; bgr[1]=255; bgr[2]= 0; break; } } } return color; } // Adapted from cv_line_template::convex_hull void templateConvexHull(const std::vector& templates, int num_modalities, cv::Point offset, cv::Size size, cv::Mat& dst) { std::vector points; for (int m = 0; m < num_modalities; ++m) { for (int i = 0; i < (int)templates[m].features.size(); ++i) { cv::linemod::Feature f = templates[m].features[i]; points.push_back(cv::Point(f.x, f.y) + offset); } } std::vector hull; cv::convexHull(points, hull); dst = cv::Mat::zeros(size, CV_8U); const int hull_count = hull.size(); const cv::Point* hull_pts = &hull[0]; cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255)); } void drawResponse(const std::vector& templates, int num_modalities, cv::Mat& dst, cv::Point offset, int T) { static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255), CV_RGB(0, 255, 0), CV_RGB(255, 255, 0), CV_RGB(255, 140, 0), CV_RGB(255, 0, 0) }; for (int m = 0; m < num_modalities; ++m) { // NOTE: Original demo recalculated max response for each feature in the TxT // box around it and chose the display color based on that response. Here // the display color just depends on the modality. cv::Scalar color = COLORS[m]; for (int i = 0; i < (int)templates[m].features.size(); ++i) { cv::linemod::Feature f = templates[m].features[i]; cv::Point pt(f.x + offset.x, f.y + offset.y); cv::circle(dst, pt, T / 2, color); } } }