// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" namespace cv { void reprojectImageTo3D( InputArray _disparity, OutputArray __3dImage, InputArray _Qmat, bool handleMissingValues, int dtype ) { CV_INSTRUMENT_REGION(); Mat disparity = _disparity.getMat(), Q = _Qmat.getMat(); int stype = disparity.type(); CV_Assert( stype == CV_8UC1 || stype == CV_16SC1 || stype == CV_32SC1 || stype == CV_32FC1 ); CV_Assert( Q.size() == Size(4,4) ); if( dtype >= 0 ) dtype = CV_MAKETYPE(CV_MAT_DEPTH(dtype), 3); if( __3dImage.fixedType() ) { int dtype_ = __3dImage.type(); CV_Assert( dtype == -1 || dtype == dtype_ ); dtype = dtype_; } if( dtype < 0 ) dtype = CV_32FC3; else CV_Assert( dtype == CV_16SC3 || dtype == CV_32SC3 || dtype == CV_32FC3 ); __3dImage.create(disparity.size(), dtype); Mat _3dImage = __3dImage.getMat(); const float bigZ = 10000.f; Matx44d _Q; Q.convertTo(_Q, CV_64F); int x, cols = disparity.cols; CV_Assert( cols >= 0 ); std::vector _sbuf(cols); std::vector _dbuf(cols); float* sbuf = &_sbuf[0]; Vec3f* dbuf = &_dbuf[0]; double minDisparity = FLT_MAX; // NOTE: here we quietly assume that at least one pixel in the disparity map is not defined. // and we set the corresponding Z's to some fixed big value. if( handleMissingValues ) cv::minMaxIdx( disparity, &minDisparity, 0, 0, 0 ); for( int y = 0; y < disparity.rows; y++ ) { float* sptr = sbuf; Vec3f* dptr = dbuf; if( stype == CV_8UC1 ) { const uchar* sptr0 = disparity.ptr(y); for( x = 0; x < cols; x++ ) sptr[x] = (float)sptr0[x]; } else if( stype == CV_16SC1 ) { const short* sptr0 = disparity.ptr(y); for( x = 0; x < cols; x++ ) sptr[x] = (float)sptr0[x]; } else if( stype == CV_32SC1 ) { const int* sptr0 = disparity.ptr(y); for( x = 0; x < cols; x++ ) sptr[x] = (float)sptr0[x]; } else sptr = disparity.ptr(y); if( dtype == CV_32FC3 ) dptr = _3dImage.ptr(y); for( x = 0; x < cols; x++) { double d = sptr[x]; Vec4d homg_pt = _Q*Vec4d(x, y, d, 1.0); dptr[x] = Vec3d(homg_pt.val); dptr[x] /= homg_pt[3]; if( fabs(d-minDisparity) <= FLT_EPSILON ) dptr[x][2] = bigZ; } if( dtype == CV_16SC3 ) { Vec3s* dptr0 = _3dImage.ptr(y); for( x = 0; x < cols; x++ ) { dptr0[x] = dptr[x]; } } else if( dtype == CV_32SC3 ) { Vec3i* dptr0 = _3dImage.ptr(y); for( x = 0; x < cols; x++ ) { dptr0[x] = dptr[x]; } } } } void stereoRectify( InputArray _cameraMatrix1, InputArray _distCoeffs1, InputArray _cameraMatrix2, InputArray _distCoeffs2, Size imageSize, InputArray R, InputArray T, OutputArray _R1, OutputArray _R2, OutputArray _P1, OutputArray _P2, OutputArray _Qmat, int flags, double alpha, Size newImgSize, Rect* roi1, Rect* roi2 ) { Mat matR = Mat_(R.getMat()), matT = Mat_(T.getMat()); Mat om, r_r; Mat Z = Mat::zeros(3, 1, CV_64F); double nx = imageSize.width, ny = imageSize.height; if( matR.rows == 3 && matR.cols == 3 ) Rodrigues(matR, om); // get vector rotation else matR.copyTo(om); om *= -0.5; // get average rotation Rodrigues(om, r_r); Mat t = r_r * matT; // rotate cameras to same orientation by averaging int idx = fabs(t.at(0)) > fabs(t.at(1)) ? 0 : 1; double c = t.at(idx), nt = norm(t, NORM_L2); double _uu[3]={0, 0, 0}; _uu[idx] = c > 0 ? 1 : -1; CV_Assert(nt > 0.0); // calculate global Z rotation Mat ww = t.cross(Mat(3, 1, CV_64F, _uu)), wR; double nw = norm(ww, NORM_L2); if (nw > 0.0) ww *= std::acos(fabs(c)/nt)/nw; Rodrigues(ww, wR); Mat Ri; // apply to both views gemm(wR, r_r, 1, Mat(), 0, Ri, GEMM_2_T); Ri.copyTo(_R1); gemm(wR, r_r, 1, Mat(), 0, Ri, 0); Ri.copyTo(_R2); t = Ri * matT; // calculate projection/camera matrices // these contain the relevant rectified image internal params (fx, fy=fx, cx, cy) Point2d cc_new[2]={}; newImgSize = newImgSize.width * newImgSize.height != 0 ? newImgSize : imageSize; const double ratio_x = (double)newImgSize.width / imageSize.width / 2; const double ratio_y = (double)newImgSize.height / imageSize.height / 2; const double ratio = idx == 1 ? ratio_x : ratio_y; Mat cameraMatrix1 = Mat_(_cameraMatrix1.getMat()); Mat cameraMatrix2 = Mat_(_cameraMatrix2.getMat()); Mat distCoeffs1, distCoeffs2; if (!_distCoeffs1.empty()) distCoeffs1 = Mat_(_distCoeffs1.getMat()); if (!_distCoeffs2.empty()) distCoeffs2 = Mat_(_distCoeffs2.getMat()); double fc_new = (cameraMatrix1.at(idx ^ 1, idx ^ 1) + cameraMatrix2.at(idx ^ 1, idx ^ 1)) * ratio; for( int k = 0; k < 2; k++ ) { const Mat& A = k == 0 ? cameraMatrix1 : cameraMatrix2; const Mat& Dk = k == 0 ? distCoeffs1 : distCoeffs2; Point2f _pts[4] = {}; Point3f _pts_3[4] = {}; Mat pts(1, 4, CV_32FC2, _pts); Mat pts_3(1, 4, CV_32FC3, _pts_3); for( int i = 0; i < 4; i++ ) { int j = (i<2) ? 0 : 1; _pts[i].x = (float)((i % 2)*(nx-1)); _pts[i].y = (float)(j*(ny-1)); } undistortPoints(pts, pts, A, Dk, Mat(), Mat()); convertPointsToHomogeneous(pts, pts_3); // Change the camera matrix to have cc=[0,0] and fc = fc_new double _a_tmp[3][3] = {{fc_new, 0, 0}, {0, fc_new, 0}, {0, 0, 1}}; Mat A_tmp(3, 3, CV_64F, _a_tmp); projectPoints(pts_3, (k == 0 ? _R1 : _R2), Z, A_tmp, Mat(), pts); Scalar avg = mean(pts); cc_new[k].x = (nx-1)/2 - avg.val[0]; cc_new[k].y = (ny-1)/2 - avg.val[1]; } // vertical focal length must be the same for both images to keep the epipolar constraint // (for horizontal epipolar lines -- TBD: check for vertical epipolar lines) // use fy for fx also, for simplicity // For simplicity, set the principal points for both cameras to be the average // of the two principal points (either one of or both x- and y- coordinates) if( flags & STEREO_ZERO_DISPARITY ) { cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5; cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; } else if( idx == 0 ) // horizontal stereo cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; else // vertical stereo cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5; double t_idx = t.at(idx); Mat pp = Mat::zeros(3, 4, CV_64F); pp.at(0, 0) = pp.at(1, 1) = fc_new; pp.at(0, 2) = cc_new[0].x; pp.at(1, 2) = cc_new[0].y; pp.at(2, 2) = 1.; pp.copyTo(_P1); pp.at(0, 2) = cc_new[1].x; pp.at(1, 2) = cc_new[1].y; pp.at(idx, 3) = t_idx*fc_new; // baseline * focal length pp.copyTo(_P2); alpha = MIN(alpha, 1.); cv::Rect_ inner1, inner2, outer1, outer2; getUndistortRectangles(cameraMatrix1, distCoeffs1, _R1, _P1, imageSize, inner1, outer1); getUndistortRectangles(cameraMatrix2, distCoeffs2, _R2, _P2, imageSize, inner2, outer2); { newImgSize = newImgSize.width*newImgSize.height != 0 ? newImgSize : imageSize; double cx1_0 = cc_new[0].x; double cy1_0 = cc_new[0].y; double cx2_0 = cc_new[1].x; double cy2_0 = cc_new[1].y; double cx1 = newImgSize.width*cx1_0/imageSize.width; double cy1 = newImgSize.height*cy1_0/imageSize.height; double cx2 = newImgSize.width*cx2_0/imageSize.width; double cy2 = newImgSize.height*cy2_0/imageSize.height; double s = 1.; if( alpha >= 0 ) { double s0 = std::max(std::max(std::max((double)cx1/(cx1_0 - inner1.x), (double)cy1/(cy1_0 - inner1.y)), (double)(newImgSize.width - 1 - cx1)/(inner1.x + inner1.width - cx1_0)), (double)(newImgSize.height - 1 - cy1)/(inner1.y + inner1.height - cy1_0)); s0 = std::max(std::max(std::max(std::max((double)cx2/(cx2_0 - inner2.x), (double)cy2/(cy2_0 - inner2.y)), (double)(newImgSize.width - 1 - cx2)/(inner2.x + inner2.width - cx2_0)), (double)(newImgSize.height - 1 - cy2)/(inner2.y + inner2.height - cy2_0)), s0); double s1 = std::min(std::min(std::min((double)cx1/(cx1_0 - outer1.x), (double)cy1/(cy1_0 - outer1.y)), (double)(newImgSize.width - 1 - cx1)/(outer1.x + outer1.width - cx1_0)), (double)(newImgSize.height - 1 - cy1)/(outer1.y + outer1.height - cy1_0)); s1 = std::min(std::min(std::min(std::min((double)cx2/(cx2_0 - outer2.x), (double)cy2/(cy2_0 - outer2.y)), (double)(newImgSize.width - 1 - cx2)/(outer2.x + outer2.width - cx2_0)), (double)(newImgSize.height - 1 - cy2)/(outer2.y + outer2.height - cy2_0)), s1); s = s0*(1 - alpha) + s1*alpha; } fc_new *= s; cc_new[0] = Point2d(cx1, cy1); cc_new[1] = Point2d(cx2, cy2); pp.at(0, 0) = pp.at(1, 1) = fc_new; pp.at(0, 2) = cx2; pp.at(1, 2) = cy2; pp.at(idx, 3) *= s; pp.copyTo(_P2); pp.at(0, 2) = cx1; pp.at(1, 2) = cy1; pp.at(idx, 3) = 0.; pp.copyTo(_P1); if(roi1) { *roi1 = cv::Rect(cvCeil((inner1.x - cx1_0)*s + cx1), cvCeil((inner1.y - cy1_0)*s + cy1), cvFloor(inner1.width*s), cvFloor(inner1.height*s)) & cv::Rect(0, 0, newImgSize.width, newImgSize.height) ; } if(roi2) { *roi2 = cv::Rect(cvCeil((inner2.x - cx2_0)*s + cx2), cvCeil((inner2.y - cy2_0)*s + cy2), cvFloor(inner2.width*s), cvFloor(inner2.height*s)) & cv::Rect(0, 0, newImgSize.width, newImgSize.height) ; } } if( _Qmat.needed() ) { double q[] = { 1, 0, 0, -cc_new[0].x, 0, 1, 0, -cc_new[0].y, 0, 0, 0, fc_new, 0, 0, -1./t_idx, (idx == 0 ? cc_new[0].x - cc_new[1].x : cc_new[0].y - cc_new[1].y)/t_idx }; Mat Q(4, 4, CV_64F, q); Q.copyTo(_Qmat); } } /* CV_IMPL int cvStereoRectifyUncalibrated( const CvMat* _points1, const CvMat* _points2, const CvMat* F0, CvSize imgSize, CvMat* _H1, CvMat* _H2, double threshold ) */ bool stereoRectifyUncalibrated( InputArray _points1, InputArray _points2, InputArray _Fmat, Size imgSize, OutputArray _Hmat1, OutputArray _Hmat2, double threshold ) { Mat points1 = _points1.getMat(), points2 = _points2.getMat(); CV_Assert( points1.size() == points2.size() ); int npoints = points1.checkVector(2); CV_Assert(npoints > 0); Mat _m1, _m2; points1.convertTo(_m1, CV_64F); points2.convertTo(_m2, CV_64F); _m1 = _m1.reshape(2, 1); _m2 = _m2.reshape(2, 1); Mat F0 = _Fmat.getMat(), F, Wdiag, U, Vt; F0.convertTo(F, CV_64F); SVDecomp(F, Wdiag, U, Vt, 0); Wdiag.at(2) = 0.; Mat W = Mat::diag(Wdiag), UW; gemm(U, W, 1, Mat(), 0, UW); gemm(UW, Vt, 1, Mat(), 0, F); double cx = cvRound( (imgSize.width-1)*0.5 ); double cy = cvRound( (imgSize.height-1)*0.5 ); if( threshold > 0 ) { Mat _lines1, _lines2; computeCorrespondEpilines(_m1, 1, F, _lines1); computeCorrespondEpilines(_m2, 2, F, _lines2); CV_Assert(_m1.isContinuous() && _m2.isContinuous() && _lines1.isContinuous() && _lines2.isContinuous()); Point2d* m1 = (Point2d*)_m1.data; Point2d* m2 = (Point2d*)_m2.data; Point3d* lines1 = (Point3d*)_lines1.data; Point3d* lines2 = (Point3d*)_lines2.data; // measure distance from points to the corresponding epilines, mark outliers int i, j; for( i = j = 0; i < npoints; i++ ) { if( fabs(m1[i].x*lines2[i].x + m1[i].y*lines2[i].y + lines2[i].z) <= threshold && fabs(m2[i].x*lines1[i].x + m2[i].y*lines1[i].y + lines1[i].z) <= threshold ) { if( j < i ) { m1[j] = m1[i]; m2[j] = m2[i]; } j++; } } npoints = j; if( npoints == 0 ) return false; _m1.cols = _m2.cols = npoints; } Mat E2 = U.col(2).clone(); if (E2.at(2) < 0) E2 *= -1.0; double t[] = { 1, 0, -cx, 0, 1, -cy, 0, 0, 1 }; Mat T(3, 3, CV_64F, t); E2 = T*E2; double* e2 = (double*)E2.data; int mirror = e2[0] < 0; double d = std::sqrt(e2[0]*e2[0] + e2[1]*e2[1]); d = MAX(d, DBL_EPSILON); double alpha = e2[0]/d; double beta = e2[1]/d; double r[] = { alpha, beta, 0, -beta, alpha, 0, 0, 0, 1 }; Mat R(3, 3, CV_64F, r); T = R*T; E2 = R*E2; double invf = fabs(e2[2]) < 1e-6*fabs(e2[0]) ? 0 : -e2[2]/e2[0]; double k[] = { 1, 0, 0, 0, 1, 0, invf, 0, 1 }; Mat K(3, 3, CV_64F, k); Mat H2 = K*T; E2 = K*E2; double it[] = { 1, 0, cx, 0, 1, cy, 0, 0, 1 }; Mat iT( 3, 3, CV_64F, it ); H2 = iT*H2; U.col(2).copyTo(E2); if (E2.at(2) < 0) E2 *= -1.0; double e2_x[] = { 0, -e2[2], e2[1], e2[2], 0, -e2[0], -e2[1], e2[0], 0 }; double e2_111[] = { e2[0], e2[0], e2[0], e2[1], e2[1], e2[1], e2[2], e2[2], e2[2], }; Mat E2_x(3, 3, CV_64F, e2_x); Mat E2_111(3, 3, CV_64F, e2_111); Mat H0 = E2_x*F + E2_111; H0 = H2*H0; Mat E1(3, 1, CV_64F, (double*)Vt.data+6); E1 = H0*E1; perspectiveTransform( _m1, _m1, H0 ); perspectiveTransform( _m2, _m2, H2 ); Mat A, X; convertPointsToHomogeneous(_m1, A, CV_64F); A = A.reshape(1, npoints); Mat BxBy = _m2.reshape(1, npoints); Mat B = BxBy.col(0); solve(A, B, X, DECOMP_SVD); CV_Assert(X.isContinuous()); double* x = X.ptr(); double ha[] = { x[0], x[1], x[2], 0, 1, 0, 0, 0, 1 }; Mat Ha(3, 3, CV_64F, ha); Mat H1 = Ha*H0; perspectiveTransform( _m1, _m1, Ha ); if( mirror ) { double mm[] = { -1, 0, cx*2, 0, -1, cy*2, 0, 0, 1 }; Mat MM(3, 3, CV_64F, mm); H1 = MM*H1; H2 = MM*H2; } H1.copyTo(_Hmat1); H2.copyTo(_Hmat2); return true; } static void adjust3rdMatrix(InputArrayOfArrays _imgpt1_0, InputArrayOfArrays _imgpt3_0, const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix3, const Mat& distCoeffs3, const Mat& R1, const Mat& R3, const Mat& P1, Mat& P3 ) { size_t n1 = _imgpt1_0.total(), n3 = _imgpt3_0.total(); std::vector imgpt1, imgpt3; for( int i = 0; i < (int)std::min(n1, n3); i++ ) { Mat pt1 = _imgpt1_0.getMat(i), pt3 = _imgpt3_0.getMat(i); int ni1 = pt1.checkVector(2, CV_32F), ni3 = pt3.checkVector(2, CV_32F); CV_Assert( ni1 > 0 && ni1 == ni3 ); const Point2f* pt1data = pt1.ptr(); const Point2f* pt3data = pt3.ptr(); std::copy(pt1data, pt1data + ni1, std::back_inserter(imgpt1)); std::copy(pt3data, pt3data + ni3, std::back_inserter(imgpt3)); } undistortPoints(imgpt1, imgpt1, cameraMatrix1, distCoeffs1, R1, P1); undistortPoints(imgpt3, imgpt3, cameraMatrix3, distCoeffs3, R3, P3); double y1_ = 0, y2_ = 0, y1y1_ = 0, y1y2_ = 0; size_t n = imgpt1.size(); CV_DbgAssert(n > 0); for( size_t i = 0; i < n; i++ ) { double y1 = imgpt3[i].y, y2 = imgpt1[i].y; y1_ += y1; y2_ += y2; y1y1_ += y1*y1; y1y2_ += y1*y2; } y1_ /= n; y2_ /= n; y1y1_ /= n; y1y2_ /= n; double a = (y1y2_ - y1_*y2_)/(y1y1_ - y1_*y1_); double b = y2_ - a*y1_; P3.at(0,0) *= a; P3.at(1,1) *= a; P3.at(0,2) = P3.at(0,2)*a; P3.at(1,2) = P3.at(1,2)*a + b; P3.at(0,3) *= a; P3.at(1,3) *= a; } float rectify3Collinear( InputArray _cameraMatrix1, InputArray _distCoeffs1, InputArray _cameraMatrix2, InputArray _distCoeffs2, InputArray _cameraMatrix3, InputArray _distCoeffs3, InputArrayOfArrays _imgpt1, InputArrayOfArrays _imgpt3, Size imageSize, InputArray _Rmat12, InputArray _Tmat12, InputArray _Rmat13, InputArray _Tmat13, OutputArray _Rmat1, OutputArray _Rmat2, OutputArray _Rmat3, OutputArray _Pmat1, OutputArray _Pmat2, OutputArray _Pmat3, OutputArray _Qmat, double alpha, Size newImgSize, Rect* roi1, Rect* roi2, int flags ) { // first, rectify the 1-2 stereo pair stereoRectify( _cameraMatrix1, _distCoeffs1, _cameraMatrix2, _distCoeffs2, imageSize, _Rmat12, _Tmat12, _Rmat1, _Rmat2, _Pmat1, _Pmat2, _Qmat, flags, alpha, newImgSize, roi1, roi2 ); Mat R12 = _Rmat12.getMat(), R13 = _Rmat13.getMat(), T12 = _Tmat12.getMat(), T13 = _Tmat13.getMat(); _Rmat3.create(3, 3, CV_64F); _Pmat3.create(3, 4, CV_64F); Mat P1 = _Pmat1.getMat(), P2 = _Pmat2.getMat(); Mat R3 = _Rmat3.getMat(), P3 = _Pmat3.getMat(); // recompute rectification transforms for cameras 1 & 2. Mat om, r_r, r_r13; if( R13.size() != Size(3,3) ) Rodrigues(R13, r_r13); else R13.copyTo(r_r13); if( R12.size() == Size(3,3) ) Rodrigues(R12, om); else R12.copyTo(om); om *= -0.5; Rodrigues(om, r_r); // rotate cameras to same orientation by averaging Mat_ t12 = r_r * T12; int idx = fabs(t12(0,0)) > fabs(t12(1,0)) ? 0 : 1; double c = t12(idx,0), nt = norm(t12, NORM_L2); CV_Assert(fabs(nt) > 0); Mat_ uu = Mat_::zeros(3,1); uu(idx, 0) = c > 0 ? 1 : -1; // calculate global Z rotation Mat_ ww = t12.cross(uu), wR; double nw = norm(ww, NORM_L2); CV_Assert(fabs(nw) > 0); ww *= std::acos(fabs(c)/nt)/nw; Rodrigues(ww, wR); // now rotate camera 3 to make its optical axis parallel to cameras 1 and 2. R3 = wR*r_r.t()*r_r13.t(); Mat_ t13 = R3 * T13; P2.copyTo(P3); Mat t = P3.col(3); t13.copyTo(t); P3.at(0,3) *= P3.at(0,0); P3.at(1,3) *= P3.at(1,1); if( !_imgpt1.empty() && !_imgpt3.empty() ) adjust3rdMatrix(_imgpt1, _imgpt3, _cameraMatrix1.getMat(), _distCoeffs1.getMat(), _cameraMatrix3.getMat(), _distCoeffs3.getMat(), _Rmat1.getMat(), R3, P1, P3); return (float)((P3.at(idx,3)/P3.at(idx,idx))/ (P2.at(idx,3)/P2.at(idx,idx))); } void cv::fisheye::stereoRectify( InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size& imageSize, InputArray _R, InputArray _tvec, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size& newImageSize, double balance, double fov_scale) { CV_INSTRUMENT_REGION(); CV_Assert((_R.size() == Size(3, 3) || _R.total() * _R.channels() == 3) && (_R.depth() == CV_32F || _R.depth() == CV_64F)); CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F)); Mat aaa = _tvec.getMat().reshape(3, 1); Vec3d rvec; // Rodrigues vector if (_R.size() == Size(3, 3)) { Matx33d rmat; _R.getMat().convertTo(rmat, CV_64F); rvec = Affine3d(rmat).rvec(); } else if (_R.total() * _R.channels() == 3) _R.getMat().convertTo(rvec, CV_64F); Vec3d tvec; _tvec.getMat().convertTo(tvec, CV_64F); // rectification algorithm rvec *= -0.5; // get average rotation Matx33d r_r; Rodrigues(rvec, r_r); // rotate cameras to same orientation by averaging Vec3d t = r_r * tvec; Vec3d uu(t[0] > 0 ? 1 : -1, 0, 0); // calculate global Z rotation Vec3d ww = t.cross(uu); double nw = norm(ww); if (nw > 0.0) ww *= std::acos(fabs(t[0])/cv::norm(t))/nw; Matx33d wr; Rodrigues(ww, wr); // apply to both views Matx33d ri1 = wr * r_r.t(); Mat(ri1, false).convertTo(R1, R1.empty() ? CV_64F : R1.type()); Matx33d ri2 = wr * r_r; Mat(ri2, false).convertTo(R2, R2.empty() ? CV_64F : R2.type()); Vec3d tnew = ri2 * tvec; // calculate projection/camera matrices. these contain the relevant rectified image internal params (fx, fy=fx, cx, cy) Matx33d newK1, newK2; fisheye::estimateNewCameraMatrixForUndistortRectify(K1, D1, imageSize, R1, newK1, balance, newImageSize, fov_scale); fisheye::estimateNewCameraMatrixForUndistortRectify(K2, D2, imageSize, R2, newK2, balance, newImageSize, fov_scale); double fc_new = std::min(newK1(1,1), newK2(1,1)); Point2d cc_new[2] = { Vec2d(newK1(0, 2), newK1(1, 2)), Vec2d(newK2(0, 2), newK2(1, 2)) }; // Vertical focal length must be the same for both images to keep the epipolar constraint use fy for fx also. // For simplicity, set the principal points for both cameras to be the average // of the two principal points (either one of or both x- and y- coordinates) if( flags & STEREO_ZERO_DISPARITY ) cc_new[0] = cc_new[1] = (cc_new[0] + cc_new[1]) * 0.5; else cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; Mat(Matx34d(fc_new, 0, cc_new[0].x, 0, 0, fc_new, cc_new[0].y, 0, 0, 0, 1, 0), false).convertTo(P1, P1.empty() ? CV_64F : P1.type()); Mat(Matx34d(fc_new, 0, cc_new[1].x, tnew[0]*fc_new, // baseline * focal length;, 0, fc_new, cc_new[1].y, 0, 0, 0, 1, 0), false).convertTo(P2, P2.empty() ? CV_64F : P2.type()); if (Q.needed()) Mat(Matx44d(1, 0, 0, -cc_new[0].x, 0, 1, 0, -cc_new[0].y, 0, 0, 0, fc_new, 0, 0, -1./tnew[0], (cc_new[0].x - cc_new[1].x)/tnew[0]), false).convertTo(Q, Q.empty() ? CV_64F : Q.depth()); } }