/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include namespace cv { namespace dnn { class MVNLayerImpl : public MVNLayer { public: MVNLayerImpl(const LayerParams& params) { setParamsFrom(params); normVariance = params.get("normalize_variance", true); acrossChannels = params.get("across_channels", false); eps = params.get("eps", 1e-9); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++) { Mat &inpBlob = *inputs[inpIdx]; Mat &outBlob = outputs[inpIdx]; int splitDim = (acrossChannels) ? 1 : 2; int i, newRows = 1; for( i = 0; i < splitDim; i++ ) newRows *= inpBlob.size[i]; Mat inpMat = inpBlob.reshape(1, newRows); Mat outMat = outBlob.reshape(1, newRows); Scalar mean, dev; for ( i = 0; i < newRows; i++) { Mat inpRow = inpMat.row(i); Mat outRow = outMat.row(i); cv::meanStdDev(inpRow, mean, (normVariance) ? dev : noArray()); double alpha = (normVariance) ? 1/(eps + dev[0]) : 1; inpRow.convertTo(outRow, outRow.type(), alpha, -mean[0] * alpha); } } } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { (void)outputs; // suppress unused variable warning long flops = 0; for(int i = 0; i < inputs.size(); i++) { flops += 6*total(inputs[i]) + 3*total(inputs[i], 0, normVariance ? 2 : 1); } return flops; } }; Ptr MVNLayer::create(const LayerParams& params) { return Ptr(new MVNLayerImpl(params)); } } }