/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; namespace { // Compares value to set using the given comparator. Returns true if // there is at least one element x in the set satisfying to: x cmp value // predicate. template bool compareToSet(const std::string& set_as_str, int value, Comparer cmp) { if (set_as_str.find_first_not_of(" ") == string::npos) return false; std::stringstream stream(set_as_str); int cur_value; while (!stream.eof()) { stream >> cur_value; if (cmp(cur_value, value)) return true; } return false; } } bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal()); #else (void)feature_set; return false; #endif } bool cv::gpu::TargetArchs::has(int major, int minor) { return hasPtx(major, minor) || hasBin(major, minor); } bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasBin(int major, int minor) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::less_equal()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::greater_equal()); #else (void)major; (void)minor; return false; #endif } bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { #if defined (HAVE_CUDA) return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::greater_equal()); #else (void)major; (void)minor; return false; #endif } #if !defined (HAVE_CUDA) int cv::gpu::getCudaEnabledDeviceCount() { return 0; } void cv::gpu::setDevice(int) { throw_nogpu(); } int cv::gpu::getDevice() { throw_nogpu(); return 0; } void cv::gpu::resetDevice() { throw_nogpu(); } size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu(); return 0; } size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu(); return 0; } bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu(); return false; } bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu(); return false; } void cv::gpu::DeviceInfo::query() { throw_nogpu(); } void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu(); } void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu(); } void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ int cv::gpu::getCudaEnabledDeviceCount() { int count; cudaError_t error = cudaGetDeviceCount( &count ); if (error == cudaErrorInsufficientDriver) return -1; if (error == cudaErrorNoDevice) return 0; cudaSafeCall(error); return count; } void cv::gpu::setDevice(int device) { cudaSafeCall( cudaSetDevice( device ) ); } int cv::gpu::getDevice() { int device; cudaSafeCall( cudaGetDevice( &device ) ); return device; } void cv::gpu::resetDevice() { cudaSafeCall( cudaDeviceReset() ); } size_t cv::gpu::DeviceInfo::freeMemory() const { size_t free_memory, total_memory; queryMemory(free_memory, total_memory); return free_memory; } size_t cv::gpu::DeviceInfo::totalMemory() const { size_t free_memory, total_memory; queryMemory(free_memory, total_memory); return total_memory; } bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const { int version = majorVersion() * 10 + minorVersion(); return version >= feature_set; } bool cv::gpu::DeviceInfo::isCompatible() const { // Check PTX compatibility if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion())) return true; // Check BIN compatibility for (int i = minorVersion(); i >= 0; --i) if (TargetArchs::hasBin(majorVersion(), i)) return true; return false; } void cv::gpu::DeviceInfo::query() { cudaDeviceProp prop; cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_)); name_ = prop.name; multi_processor_count_ = prop.multiProcessorCount; majorVersion_ = prop.major; minorVersion_ = prop.minor; } void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const { int prev_device_id = getDevice(); if (prev_device_id != device_id_) setDevice(device_id_); cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory)); if (prev_device_id != device_id_) setDevice(prev_device_id); } namespace { template void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device) { *attribute = T(); CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu?? if( CUDA_SUCCESS == error ) return; printf("Driver API error = %04d\n", error); cv::gpu::error("driver API error", __FILE__, __LINE__); } int convertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM typedef struct { int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version int Cores; } SMtoCores; SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, { -1, -1 } }; int index = 0; while (gpuArchCoresPerSM[index].SM != -1) { if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) return gpuArchCoresPerSM[index].Cores; index++; } printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor); return -1; } } void cv::gpu::printCudaDeviceInfo(int device) { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); printf("Device count: %d\n", count); int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); const char *computeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this device)", "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", "Unknown", NULL }; for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); printf("\nDevice %d: \"%s\"\n", dev, prop.name); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor); printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem); printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor), convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount); printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); // This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output int memoryClock, memBusWidth, L2CacheSize; getCudaAttribute( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev ); getCudaAttribute( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev ); getCudaAttribute( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev ); printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f); printf(" Memory Bus Width: %d-bit\n", memBusWidth); if (L2CacheSize) printf(" L2 Cache Size: %d bytes\n", L2CacheSize); printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); printf(" Warp size: %d\n", prop.warpSize); printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); printf(" Compute Mode:\n"); printf(" %s \n", computeMode[prop.computeMode]); } printf("\n"); printf("deviceQuery, CUDA Driver = CUDART"); printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); printf(", NumDevs = %d\n\n", count); fflush(stdout); } void cv::gpu::printShortCudaDeviceInfo(int device) { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f); printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount); printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); } fflush(stdout); } #endif