// // this sample demonstrates the use of pretrained openpose networks with opencv's dnn module. // // it can be used for body pose detection, using either the COCO model(18 parts): // http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel // https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/openpose_pose_coco.prototxt // // or the MPI model(16 parts): // http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel // https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/openpose_pose_mpi_faster_4_stages.prototxt // // (to simplify this sample, the body models are restricted to a single person.) // // // you can also try the hand pose model: // http://posefs1.perception.cs.cmu.edu/OpenPose/models/hand/pose_iter_102000.caffemodel // https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/models/hand/pose_deploy.prototxt // #include #include #include using namespace cv; using namespace cv::dnn; #include using namespace std; // connection table, in the format [model_id][pair_id][from/to] // please look at the nice explanation at the bottom of: // https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md // const int POSE_PAIRS[3][20][2] = { { // COCO body {1,2}, {1,5}, {2,3}, {3,4}, {5,6}, {6,7}, {1,8}, {8,9}, {9,10}, {1,11}, {11,12}, {12,13}, {1,0}, {0,14}, {14,16}, {0,15}, {15,17} }, { // MPI body {0,1}, {1,2}, {2,3}, {3,4}, {1,5}, {5,6}, {6,7}, {1,14}, {14,8}, {8,9}, {9,10}, {14,11}, {11,12}, {12,13} }, { // hand {0,1}, {1,2}, {2,3}, {3,4}, // thumb {0,5}, {5,6}, {6,7}, {7,8}, // pinkie {0,9}, {9,10}, {10,11}, {11,12}, // middle {0,13}, {13,14}, {14,15}, {15,16}, // ring {0,17}, {17,18}, {18,19}, {19,20} // small }}; int main(int argc, char **argv) { CommandLineParser parser(argc, argv, "{ h help | false | print this help message }" "{ p proto | | (required) model configuration, e.g. hand/pose.prototxt }" "{ m model | | (required) model weights, e.g. hand/pose_iter_102000.caffemodel }" "{ i image | | (required) path to image file (containing a single person, or hand) }" "{ t threshold | 0.1 | threshold or confidence value for the heatmap }" ); String modelTxt = parser.get("proto"); String modelBin = parser.get("model"); String imageFile = parser.get("image"); float thresh = parser.get("threshold"); if (parser.get("help") || modelTxt.empty() || modelBin.empty() || imageFile.empty()) { cout << "A sample app to demonstrate human or hand pose detection with a pretrained OpenPose dnn." << endl; parser.printMessage(); return 0; } // fixed input size for the pretrained network int W_in = 368; int H_in = 368; // read the network model Net net = readNetFromCaffe(modelTxt, modelBin); // and the image Mat img = imread(imageFile); if (img.empty()) { std::cerr << "Can't read image from the file: " << imageFile << std::endl; exit(-1); } // send it through the network Mat inputBlob = blobFromImage(img, 1.0 / 255, Size(W_in, H_in), Scalar(0, 0, 0), false, false); net.setInput(inputBlob); Mat result = net.forward(); // the result is an array of "heatmaps", the probability of a body part being in location x,y int midx, npairs; int nparts = result.size[1]; int H = result.size[2]; int W = result.size[3]; // find out, which model we have if (nparts == 19) { // COCO body midx = 0; npairs = 17; nparts = 18; // skip background } else if (nparts == 16) { // MPI body midx = 1; npairs = 14; } else if (nparts == 22) { // hand midx = 2; npairs = 20; } else { cerr << "there should be 19 parts for the COCO model, 16 for MPI, or 22 for the hand one, but this model has " << nparts << " parts." << endl; return (0); } // find the position of the body parts vector points(22); for (int n=0; n thresh) p = pm; points[n] = p; } // connect body parts and draw it ! float SX = float(img.cols) / W; float SY = float(img.rows) / H; for (int n=0; n