#!/usr/bin/python
#
# The full "Square Detector" program.
# It loads several images subsequentally and tries to find squares in
# each image
#

import urllib2
from math import sqrt
import cv2.cv as cv

thresh = 50
img = None
img0 = None
storage = None
wndname = "Square Detection Demo"

def angle(pt1, pt2, pt0):
    dx1 = pt1.x - pt0.x
    dy1 = pt1.y - pt0.y
    dx2 = pt2.x - pt0.x
    dy2 = pt2.y - pt0.y
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10)

def findSquares4(img, storage):
    N = 11
    sz = (img.width & -2, img.height & -2)
    timg = cv.CloneImage(img); # make a copy of input image
    gray = cv.CreateImage(sz, 8, 1)
    pyr = cv.CreateImage((sz.width/2, sz.height/2), 8, 3)
    # create empty sequence that will contain points -
    # 4 points per square (the square's vertices)
    squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage)
    squares = CvSeq_CvPoint.cast(squares)

    # select the maximum ROI in the image
    # with the width and height divisible by 2
    subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height))

    # down-scale and upscale the image to filter out the noise
    cv.PyrDown(subimage, pyr, 7)
    cv.PyrUp(pyr, subimage, 7)
    tgray = cv.CreateImage(sz, 8, 1)
    # find squares in every color plane of the image
    for c in range(3):
        # extract the c-th color plane
        channels = [None, None, None]
        channels[c] = tgray
        cv.Split(subimage, channels[0], channels[1], channels[2], None)
        for l in range(N):
            # hack: use Canny instead of zero threshold level.
            # Canny helps to catch squares with gradient shading
            if(l == 0):
                # apply Canny. Take the upper threshold from slider
                # and set the lower to 0 (which forces edges merging)
                cv.Canny(tgray, gray, 0, thresh, 5)
                # dilate canny output to remove potential
                # holes between edge segments
                cv.Dilate(gray, gray, None, 1)
            else:
                # apply threshold if l!=0:
                #     tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0
                cv.Threshold(tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)

            # find contours and store them all as a list
            count, contours = cv.FindContours(gray, storage, sizeof_CvContour,
                cv.CV_RETR_LIST, cv. CV_CHAIN_APPROX_SIMPLE, (0, 0))

            if not contours:
                continue

            # test each contour
            for contour in contours.hrange():
                # approximate contour with accuracy proportional
                # to the contour perimeter
                result = cv.ApproxPoly(contour, sizeof_CvContour, storage,
                    cv.CV_POLY_APPROX_DP, cv.ContourPerimeter(contours)*0.02, 0)
                # square contours should have 4 vertices after approximation
                # relatively large area (to filter out noisy contours)
                # and be convex.
                # Note: absolute value of an area is used because
                # area may be positive or negative - in accordance with the
                # contour orientation
                if(result.total == 4 and
                    abs(cv.ContourArea(result)) > 1000 and
                    cv.CheckContourConvexity(result)):
                    s = 0
                    for i in range(5):
                        # find minimum angle between joint
                        # edges (maximum of cosine)
                        if(i >= 2):
                            t = abs(angle(result[i], result[i-2], result[i-1]))
                            if s<t:
                                s=t
                    # if cosines of all angles are small
                    # (all angles are ~90 degree) then write quandrange
                    # vertices to resultant sequence
                    if(s < 0.3):
                        for i in range(4):
                            squares.append(result[i])

    return squares

# the function draws all the squares in the image
def drawSquares(img, squares):
    cpy = cv.CloneImage(img)
    # read 4 sequence elements at a time (all vertices of a square)
    i=0
    while i<squares.total:
        pt = []
        # read 4 vertices
        pt.append(squares[i])
        pt.append(squares[i+1])
        pt.append(squares[i+2])
        pt.append(squares[i+3])

        # draw the square as a closed polyline
        cv.PolyLine(cpy, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv. CV_AA, 0)
        i+=4

    # show the resultant image
    cv.ShowImage(wndname, cpy)

def on_trackbar(a):
    if(img):
        drawSquares(img, findSquares4(img, storage))

names =  ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png",
          "../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ]

if __name__ == "__main__":
    # create memory storage that will contain all the dynamic data
    storage = cv.CreateMemStorage(0)
    for name in names:
        img0 = cv.LoadImage(name, 1)
        if not img0:
            print "Couldn't load %s" % name
            continue
        img = cv.CloneImage(img0)
        # create window and a trackbar (slider) with parent "image" and set callback
        # (the slider regulates upper threshold, passed to Canny edge detector)
        cv.NamedWindow(wndname, 1)
        cv.CreateTrackbar("canny thresh", wndname, thresh, 1000, on_trackbar)
        # force the image processing
        on_trackbar(0)
        # wait for key.
        # Also the function cv.WaitKey takes care of event processing
        c = cv.WaitKey(0) % 0x100
        # clear memory storage - reset free space position
        cv.ClearMemStorage(storage)
        if(c == '\x1b'):
            break
    cv.DestroyWindow(wndname)