/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined (HAVE_CUDA) void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::transpose(const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } double cv::gpu::threshold(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); return 0.0; } void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); } void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); } double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; } double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; } void cv::gpu::flip(const GpuMat&, GpuMat&, int) { throw_nogpu(); } void cv::gpu::resize(const GpuMat&, GpuMat&, Size, double, double, int) { throw_nogpu(); } Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); } void cv::gpu::minMax(const GpuMat&, double*, double*) { throw_nogpu(); } void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, const Scalar&) { throw_nogpu(); } void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int) { throw_nogpu(); } void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int) { throw_nogpu(); } void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace { typedef NppStatus (*npp_warp_8u_t)(const Npp8u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp8u* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_warp_16u_t)(const Npp16u* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp16u* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_warp_32s_t)(const Npp32s* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32s* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_warp_32f_t)(const Npp32f* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, Npp32f* pDst, int dstStep, NppiRect dstRoi, const double coeffs[][3], int interpolation); typedef NppStatus (*npp_binary_func_8u_scale_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor); typedef NppStatus (*npp_binary_func_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst, int nDstStep, NppiSize oSizeROI); void nppFuncCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, npp_binary_func_8u_scale_t npp_func_8uc1, npp_binary_func_8u_scale_t npp_func_8uc4, npp_binary_func_32f_t npp_func_32fc1) { CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32FC1); dst.create( src1.size(), src1.type() ); NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; if (src1.depth() == CV_8U) { if (src1.channels() == 1) { npp_func_8uc1((const Npp8u*)src1.ptr(), src1.step, (const Npp8u*)src2.ptr(), src2.step, (Npp8u*)dst.ptr(), dst.step, sz, 0); } else { npp_func_8uc4((const Npp8u*)src1.ptr(), src1.step, (const Npp8u*)src2.ptr(), src2.step, (Npp8u*)dst.ptr(), dst.step, sz, 0); } } else //if (src1.depth() == CV_32F) { npp_func_32fc1((const Npp32f*)src1.ptr(), src1.step, (const Npp32f*)src2.ptr(), src2.step, (Npp32f*)dst.ptr(), dst.step, sz); } } } void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { nppFuncCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32f_C1R); } void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { nppFuncCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32f_C1R); } void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { nppFuncCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32f_C1R); } void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { nppFuncCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32f_C1R); } void cv::gpu::transpose(const GpuMat& src, GpuMat& dst) { CV_Assert(src.type() == CV_8UC1); dst.create( src.cols, src.rows, src.type() ); NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppiTranspose_8u_C1R((const Npp8u*)src.ptr(), src.step, (Npp8u*)dst.ptr(), dst.step, sz); } void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) { CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert((src1.depth() == CV_8U || src1.depth() == CV_32F) && src1.channels() == 1); dst.create( src1.size(), src1.type() ); NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; if (src1.depth() == CV_8U) { nppiAbsDiff_8u_C1R((const Npp8u*)src1.ptr(), src1.step, (const Npp8u*)src2.ptr(), src2.step, (Npp8u*)dst.ptr(), dst.step, sz); } else //if (src1.depth() == CV_32F) { nppiAbsDiff_32f_C1R((const Npp32f*)src1.ptr(), src1.step, (const Npp32f*)src2.ptr(), src2.step, (Npp32f*)dst.ptr(), dst.step, sz); } } double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double /*maxVal*/, int thresholdType) { CV_Assert(src.type() == CV_32FC1 && thresholdType == THRESH_TRUNC); dst.create( src.size(), src.type() ); NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppiThreshold_32f_C1R((const Npp32f*)src.ptr(), src.step, (Npp32f*)dst.ptr(), dst.step, sz, (Npp32f)thresh, NPP_CMP_GREATER); return thresh; } void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop) { CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert((src1.type() == CV_8UC4 || src1.type() == CV_32FC1) && cmpop != CMP_NE); dst.create( src1.size(), CV_8UC1 ); static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ }; NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; if (src1.depth() == CV_8U) { nppiCompare_8u_C4R((const Npp8u*)src1.ptr(), src1.step, (const Npp8u*)src2.ptr(), src2.step, (Npp8u*)dst.ptr(), dst.step, sz, nppCmpOp[cmpop]); } else //if (src1.depth() == CV_32F) { nppiCompare_32f_C1R((const Npp32f*)src1.ptr(), src1.step, (const Npp32f*)src2.ptr(), src2.step, (Npp8u*)dst.ptr(), dst.step, sz, nppCmpOp[cmpop]); } } void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev) { CV_Assert(src.type() == CV_8UC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppiMean_StdDev_8u_C1R((const Npp8u*)src.ptr(), src.step, sz, mean.val, stddev.val); } double cv::gpu::norm(const GpuMat& src1, int normType) { return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType); } double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert((src1.type() == CV_8UC1) && (normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2)); typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, NppiSize oSizeROI, Npp64f* pRetVal); static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; int funcIdx = normType >> 1; Scalar retVal; npp_norm_diff_func[funcIdx]((const Npp8u*)src1.ptr(), src1.step, (const Npp8u*)src2.ptr(), src2.step, sz, retVal.val); return retVal[0]; } void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); dst.create( src.size(), src.type() ); NppiSize sz; sz.width = src.cols; sz.height = src.rows; if (src.channels() == 1) { nppiMirror_8u_C1R((const Npp8u*)src.ptr(), src.step, (Npp8u*)dst.ptr(), dst.step, sz, (flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))); } else { nppiMirror_8u_C4R((const Npp8u*)src.ptr(), src.step, (Npp8u*)dst.ptr(), dst.step, sz, (flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))); } } void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation) { static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS}; CV_Assert((src.type() == CV_8UC1 || src.type() == CV_8UC4) && (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4)); CV_Assert( src.size().area() > 0 ); CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) ); if( dsize == Size() ) { dsize = Size(saturate_cast(src.cols * fx), saturate_cast(src.rows * fy)); } else { fx = (double)dsize.width / src.cols; fy = (double)dsize.height / src.rows; } dst.create(dsize, src.type()); NppiSize srcsz; srcsz.width = src.cols; srcsz.height = src.rows; NppiRect srcrect; srcrect.x = srcrect.y = 0; srcrect.width = src.cols; srcrect.height = src.rows; NppiSize dstsz; dstsz.width = dst.cols; dstsz.height = dst.rows; if (src.channels() == 1) { nppiResize_8u_C1R((const Npp8u*)src.ptr(), srcsz, src.step, srcrect, (Npp8u*)dst.ptr(), dst.step, dstsz, fx, fy, npp_inter[interpolation]); } else { nppiResize_8u_C4R((const Npp8u*)src.ptr(), srcsz, src.step, srcrect, (Npp8u*)dst.ptr(), dst.step, dstsz, fx, fy, npp_inter[interpolation]); } } Scalar cv::gpu::sum(const GpuMat& src) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); Scalar res; NppiSize sz; sz.width = src.cols; sz.height = src.rows; if (src.channels() == 1) { nppiSum_8u_C1R((const Npp8u*)src.ptr(), src.step, sz, res.val); } else { nppiSum_8u_C4R((const Npp8u*)src.ptr(), src.step, sz, res.val); } return res; } void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal) { CV_Assert(src.type() == CV_8UC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; Npp8u min_res, max_res; nppiMinMax_8u_C1R((const Npp8u*)src.ptr(), src.step, sz, &min_res, &max_res); if (minVal) *minVal = min_res; if (maxVal) *maxVal = max_res; } void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1); dst.create(src.rows + top + bottom, src.cols + left + right, src.type()); NppiSize srcsz; srcsz.width = src.cols; srcsz.height = src.rows; NppiSize dstsz; dstsz.width = dst.cols; dstsz.height = dst.rows; if (src.depth() == CV_8U) { if (src.channels() == 1) { Npp8u nVal = (Npp8u)value[0]; nppiCopyConstBorder_8u_C1R((const Npp8u*)src.ptr(), src.step, srcsz, (Npp8u*)dst.ptr(), dst.step, dstsz, top, left, nVal); } else { Npp8u nVal[] = {(Npp8u)value[0], (Npp8u)value[1], (Npp8u)value[2], (Npp8u)value[3]}; nppiCopyConstBorder_8u_C4R((const Npp8u*)src.ptr(), src.step, srcsz, (Npp8u*)dst.ptr(), dst.step, dstsz, top, left, nVal); } } else //if (src.depth() == CV_32S) { Npp32s nVal = (Npp32s)value[0]; nppiCopyConstBorder_32s_C1R((const Npp32s*)src.ptr(), src.step, srcsz, (Npp32s*)dst.ptr(), dst.step, dstsz, top, left, nVal); } } namespace { void nppWarpCaller(const GpuMat& src, GpuMat& dst, double coeffs[][3], const Size& dsize, int flags, npp_warp_8u_t npp_warp_8u[][2], npp_warp_16u_t npp_warp_16u[][2], npp_warp_32s_t npp_warp_32s[][2], npp_warp_32f_t npp_warp_32f[][2]) { static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; int interpolation = flags & INTER_MAX; CV_Assert((src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F) && src.channels() != 2); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); NppiSize srcsz; srcsz.height = src.rows; srcsz.width = src.cols; NppiRect srcroi; srcroi.x = srcroi.y = 0; srcroi.height = src.rows; srcroi.width = src.cols; NppiRect dstroi; dstroi.x = dstroi.y = 0; dstroi.height = dst.rows; dstroi.width = dst.cols; int warpInd = (flags & WARP_INVERSE_MAP) >> 4; switch (src.depth()) { case CV_8U: npp_warp_8u[src.channels()][warpInd]((const Npp8u*)src.ptr(), srcsz, src.step, srcroi, (Npp8u*)dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]); break; case CV_16U: npp_warp_16u[src.channels()][warpInd]((const Npp16u*)src.ptr(), srcsz, src.step, srcroi, (Npp16u*)dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]); break; case CV_32SC1: npp_warp_32s[src.channels()][warpInd]((const Npp32s*)src.ptr(), srcsz, src.step, srcroi, (Npp32s*)dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]); break; case CV_32FC1: npp_warp_32f[src.channels()][warpInd]((const Npp32f*)src.ptr(), srcsz, src.step, srcroi, (Npp32f*)dst.ptr(), dst.step, dstroi, coeffs, npp_inter[interpolation]); break; default: CV_Assert(!"Unsupported source type"); } } } void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags) { static npp_warp_8u_t npp_warpAffine_8u[][2] = { {0, 0}, {nppiWarpAffine_8u_C1R, nppiWarpAffineBack_8u_C1R}, {0, 0}, {nppiWarpAffine_8u_C3R, nppiWarpAffineBack_8u_C3R}, {nppiWarpAffine_8u_C4R, nppiWarpAffineBack_8u_C4R} }; static npp_warp_16u_t npp_warpAffine_16u[][2] = { {0, 0}, {nppiWarpAffine_16u_C1R, nppiWarpAffineBack_16u_C1R}, {0, 0}, {nppiWarpAffine_16u_C3R, nppiWarpAffineBack_16u_C3R}, {nppiWarpAffine_16u_C4R, nppiWarpAffineBack_16u_C4R} }; static npp_warp_32s_t npp_warpAffine_32s[][2] = { {0, 0}, {nppiWarpAffine_32s_C1R, nppiWarpAffineBack_32s_C1R}, {0, 0}, {nppiWarpAffine_32s_C3R, nppiWarpAffineBack_32s_C3R}, {nppiWarpAffine_32s_C4R, nppiWarpAffineBack_32s_C4R} }; static npp_warp_32f_t npp_warpAffine_32f[][2] = { {0, 0}, {nppiWarpAffine_32f_C1R, nppiWarpAffineBack_32f_C1R}, {0, 0}, {nppiWarpAffine_32f_C3R, nppiWarpAffineBack_32f_C3R}, {nppiWarpAffine_32f_C4R, nppiWarpAffineBack_32f_C4R} }; CV_Assert(M.rows == 2 && M.cols == 3); double coeffs[2][3]; Mat coeffsMat(2, 3, CV_64F, (void*)coeffs); M.convertTo(coeffsMat, coeffsMat.type()); nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpAffine_8u, npp_warpAffine_16u, npp_warpAffine_32s, npp_warpAffine_32f); } void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags) { static npp_warp_8u_t npp_warpPerspective_8u[][2] = { {0, 0}, {nppiWarpPerspective_8u_C1R, nppiWarpPerspectiveBack_8u_C1R}, {0, 0}, {nppiWarpPerspective_8u_C3R, nppiWarpPerspectiveBack_8u_C3R}, {nppiWarpPerspective_8u_C4R, nppiWarpPerspectiveBack_8u_C4R} }; static npp_warp_16u_t npp_warpPerspective_16u[][2] = { {0, 0}, {nppiWarpPerspective_16u_C1R, nppiWarpPerspectiveBack_16u_C1R}, {0, 0}, {nppiWarpPerspective_16u_C3R, nppiWarpPerspectiveBack_16u_C3R}, {nppiWarpPerspective_16u_C4R, nppiWarpPerspectiveBack_16u_C4R} }; static npp_warp_32s_t npp_warpPerspective_32s[][2] = { {0, 0}, {nppiWarpPerspective_32s_C1R, nppiWarpPerspectiveBack_32s_C1R}, {0, 0}, {nppiWarpPerspective_32s_C3R, nppiWarpPerspectiveBack_32s_C3R}, {nppiWarpPerspective_32s_C4R, nppiWarpPerspectiveBack_32s_C4R} }; static npp_warp_32f_t npp_warpPerspective_32f[][2] = { {0, 0}, {nppiWarpPerspective_32f_C1R, nppiWarpPerspectiveBack_32f_C1R}, {0, 0}, {nppiWarpPerspective_32f_C3R, nppiWarpPerspectiveBack_32f_C3R}, {nppiWarpPerspective_32f_C4R, nppiWarpPerspectiveBack_32f_C4R} }; CV_Assert(M.rows == 3 && M.cols == 3); double coeffs[3][3]; Mat coeffsMat(3, 3, CV_64F, (void*)coeffs); M.convertTo(coeffsMat, coeffsMat.type()); nppWarpCaller(src, dst, coeffs, dsize, flags, npp_warpPerspective_8u, npp_warpPerspective_16u, npp_warpPerspective_32s, npp_warpPerspective_32f); } void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation) { static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); NppiSize srcsz; srcsz.height = src.rows; srcsz.width = src.cols; NppiRect srcroi; srcroi.x = srcroi.y = 0; srcroi.height = src.rows; srcroi.width = src.cols; NppiRect dstroi; dstroi.x = dstroi.y = 0; dstroi.height = dst.rows; dstroi.width = dst.cols; if (src.channels() == 1) { nppiRotate_8u_C1R((const Npp8u*)src.ptr(), srcsz, src.step, srcroi, (Npp8u*)dst.ptr(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]); } else { nppiRotate_8u_C4R((const Npp8u*)src.ptr(), srcsz, src.step, srcroi, (Npp8u*)dst.ptr(), dst.step, dstroi, angle, xShift, yShift, npp_inter[interpolation]); } } #endif /* !defined (HAVE_CUDA) */