/* -- translated by f2c (version 20201020 (for_lapack)). -- */ #include "f2c.h" //> \brief \b DORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm). // // =========== DOCUMENTATION =========== // // Online html documentation available at // http://www.netlib.org/lapack/explore-html/ // //> \htmlonly //> Download DORM2R + dependencies //> //> [TGZ] //> //> [ZIP] //> //> [TXT] //> \endhtmlonly // // Definition: // =========== // // SUBROUTINE DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, // WORK, INFO ) // // .. Scalar Arguments .. // CHARACTER SIDE, TRANS // INTEGER INFO, K, LDA, LDC, M, N // .. // .. Array Arguments .. // DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) // .. // // //> \par Purpose: // ============= //> //> \verbatim //> //> DORM2R overwrites the general real m by n matrix C with //> //> Q * C if SIDE = 'L' and TRANS = 'N', or //> //> Q**T* C if SIDE = 'L' and TRANS = 'T', or //> //> C * Q if SIDE = 'R' and TRANS = 'N', or //> //> C * Q**T if SIDE = 'R' and TRANS = 'T', //> //> where Q is a real orthogonal matrix defined as the product of k //> elementary reflectors //> //> Q = H(1) H(2) . . . H(k) //> //> as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n //> if SIDE = 'R'. //> \endverbatim // // Arguments: // ========== // //> \param[in] SIDE //> \verbatim //> SIDE is CHARACTER*1 //> = 'L': apply Q or Q**T from the Left //> = 'R': apply Q or Q**T from the Right //> \endverbatim //> //> \param[in] TRANS //> \verbatim //> TRANS is CHARACTER*1 //> = 'N': apply Q (No transpose) //> = 'T': apply Q**T (Transpose) //> \endverbatim //> //> \param[in] M //> \verbatim //> M is INTEGER //> The number of rows of the matrix C. M >= 0. //> \endverbatim //> //> \param[in] N //> \verbatim //> N is INTEGER //> The number of columns of the matrix C. N >= 0. //> \endverbatim //> //> \param[in] K //> \verbatim //> K is INTEGER //> The number of elementary reflectors whose product defines //> the matrix Q. //> If SIDE = 'L', M >= K >= 0; //> if SIDE = 'R', N >= K >= 0. //> \endverbatim //> //> \param[in] A //> \verbatim //> A is DOUBLE PRECISION array, dimension (LDA,K) //> The i-th column must contain the vector which defines the //> elementary reflector H(i), for i = 1,2,...,k, as returned by //> DGEQRF in the first k columns of its array argument A. //> A is modified by the routine but restored on exit. //> \endverbatim //> //> \param[in] LDA //> \verbatim //> LDA is INTEGER //> The leading dimension of the array A. //> If SIDE = 'L', LDA >= max(1,M); //> if SIDE = 'R', LDA >= max(1,N). //> \endverbatim //> //> \param[in] TAU //> \verbatim //> TAU is DOUBLE PRECISION array, dimension (K) //> TAU(i) must contain the scalar factor of the elementary //> reflector H(i), as returned by DGEQRF. //> \endverbatim //> //> \param[in,out] C //> \verbatim //> C is DOUBLE PRECISION array, dimension (LDC,N) //> On entry, the m by n matrix C. //> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. //> \endverbatim //> //> \param[in] LDC //> \verbatim //> LDC is INTEGER //> The leading dimension of the array C. LDC >= max(1,M). //> \endverbatim //> //> \param[out] WORK //> \verbatim //> WORK is DOUBLE PRECISION array, dimension //> (N) if SIDE = 'L', //> (M) if SIDE = 'R' //> \endverbatim //> //> \param[out] INFO //> \verbatim //> INFO is INTEGER //> = 0: successful exit //> < 0: if INFO = -i, the i-th argument had an illegal value //> \endverbatim // // Authors: // ======== // //> \author Univ. of Tennessee //> \author Univ. of California Berkeley //> \author Univ. of Colorado Denver //> \author NAG Ltd. // //> \date December 2016 // //> \ingroup doubleOTHERcomputational // // ===================================================================== /* Subroutine */ int dorm2r_(char *side, char *trans, int *m, int *n, int *k, double *a, int *lda, double *tau, double *c__, int *ldc, double *work, int *info) { // Table of constant values int c__1 = 1; // System generated locals int a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; // Local variables int i__, i1, i2, i3, ic, jc, mi, ni, nq; double aii; int left; extern /* Subroutine */ int dlarf_(char *, int *, int *, double *, int *, double *, double *, int *, double *); extern int lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, int *); int notran; // // -- LAPACK computational routine (version 3.7.0) -- // -- LAPACK is a software package provided by Univ. of Tennessee, -- // -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- // December 2016 // // .. Scalar Arguments .. // .. // .. Array Arguments .. // .. // // ===================================================================== // // .. Parameters .. // .. // .. Local Scalars .. // .. // .. External Functions .. // .. // .. External Subroutines .. // .. // .. Intrinsic Functions .. // .. // .. Executable Statements .. // // Test the input arguments // // Parameter adjustments a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; // Function Body *info = 0; left = lsame_(side, "L"); notran = lsame_(trans, "N"); // // NQ is the order of Q // if (left) { nq = *m; } else { nq = *n; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! notran && ! lsame_(trans, "T")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("DORM2R", &i__1); return 0; } // // Quick return if possible // if (*m == 0 || *n == 0 || *k == 0) { return 0; } if (left && ! notran || ! left && notran) { i1 = 1; i2 = *k; i3 = 1; } else { i1 = *k; i2 = 1; i3 = -1; } if (left) { ni = *n; jc = 1; } else { mi = *m; ic = 1; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { if (left) { // // H(i) is applied to C(i:m,1:n) // mi = *m - i__ + 1; ic = i__; } else { // // H(i) is applied to C(1:m,i:n) // ni = *n - i__ + 1; jc = i__; } // // Apply H(i) // aii = a[i__ + i__ * a_dim1]; a[i__ + i__ * a_dim1] = 1.; dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &tau[i__], &c__[ ic + jc * c_dim1], ldc, &work[1]); a[i__ + i__ * a_dim1] = aii; // L10: } return 0; // // End of DORM2R // } // dorm2r_ /* -- translated by f2c (version 20201020 (for_lapack)). -- */ //> \brief \b DORMQR // // =========== DOCUMENTATION =========== // // Online html documentation available at // http://www.netlib.org/lapack/explore-html/ // //> \htmlonly //> Download DORMQR + dependencies //> //> [TGZ] //> //> [ZIP] //> //> [TXT] //> \endhtmlonly // // Definition: // =========== // // SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, // WORK, LWORK, INFO ) // // .. Scalar Arguments .. // CHARACTER SIDE, TRANS // INTEGER INFO, K, LDA, LDC, LWORK, M, N // .. // .. Array Arguments .. // DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) // .. // // //> \par Purpose: // ============= //> //> \verbatim //> //> DORMQR overwrites the general real M-by-N matrix C with //> //> SIDE = 'L' SIDE = 'R' //> TRANS = 'N': Q * C C * Q //> TRANS = 'T': Q**T * C C * Q**T //> //> where Q is a real orthogonal matrix defined as the product of k //> elementary reflectors //> //> Q = H(1) H(2) . . . H(k) //> //> as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N //> if SIDE = 'R'. //> \endverbatim // // Arguments: // ========== // //> \param[in] SIDE //> \verbatim //> SIDE is CHARACTER*1 //> = 'L': apply Q or Q**T from the Left; //> = 'R': apply Q or Q**T from the Right. //> \endverbatim //> //> \param[in] TRANS //> \verbatim //> TRANS is CHARACTER*1 //> = 'N': No transpose, apply Q; //> = 'T': Transpose, apply Q**T. //> \endverbatim //> //> \param[in] M //> \verbatim //> M is INTEGER //> The number of rows of the matrix C. M >= 0. //> \endverbatim //> //> \param[in] N //> \verbatim //> N is INTEGER //> The number of columns of the matrix C. N >= 0. //> \endverbatim //> //> \param[in] K //> \verbatim //> K is INTEGER //> The number of elementary reflectors whose product defines //> the matrix Q. //> If SIDE = 'L', M >= K >= 0; //> if SIDE = 'R', N >= K >= 0. //> \endverbatim //> //> \param[in] A //> \verbatim //> A is DOUBLE PRECISION array, dimension (LDA,K) //> The i-th column must contain the vector which defines the //> elementary reflector H(i), for i = 1,2,...,k, as returned by //> DGEQRF in the first k columns of its array argument A. //> \endverbatim //> //> \param[in] LDA //> \verbatim //> LDA is INTEGER //> The leading dimension of the array A. //> If SIDE = 'L', LDA >= max(1,M); //> if SIDE = 'R', LDA >= max(1,N). //> \endverbatim //> //> \param[in] TAU //> \verbatim //> TAU is DOUBLE PRECISION array, dimension (K) //> TAU(i) must contain the scalar factor of the elementary //> reflector H(i), as returned by DGEQRF. //> \endverbatim //> //> \param[in,out] C //> \verbatim //> C is DOUBLE PRECISION array, dimension (LDC,N) //> On entry, the M-by-N matrix C. //> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. //> \endverbatim //> //> \param[in] LDC //> \verbatim //> LDC is INTEGER //> The leading dimension of the array C. LDC >= max(1,M). //> \endverbatim //> //> \param[out] WORK //> \verbatim //> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) //> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. //> \endverbatim //> //> \param[in] LWORK //> \verbatim //> LWORK is INTEGER //> The dimension of the array WORK. //> If SIDE = 'L', LWORK >= max(1,N); //> if SIDE = 'R', LWORK >= max(1,M). //> For good performance, LWORK should generally be larger. //> //> If LWORK = -1, then a workspace query is assumed; the routine //> only calculates the optimal size of the WORK array, returns //> this value as the first entry of the WORK array, and no error //> message related to LWORK is issued by XERBLA. //> \endverbatim //> //> \param[out] INFO //> \verbatim //> INFO is INTEGER //> = 0: successful exit //> < 0: if INFO = -i, the i-th argument had an illegal value //> \endverbatim // // Authors: // ======== // //> \author Univ. of Tennessee //> \author Univ. of California Berkeley //> \author Univ. of Colorado Denver //> \author NAG Ltd. // //> \date December 2016 // //> \ingroup doubleOTHERcomputational // // ===================================================================== /* Subroutine */ int dormqr_(char *side, char *trans, int *m, int *n, int *k, double *a, int *lda, double *tau, double *c__, int *ldc, double *work, int *lwork, int *info) { // Table of constant values int c__1 = 1; int c_n1 = -1; int c__2 = 2; int c__65 = 65; // System generated locals address a__1[2]; int a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, i__5; char ch__1[2+1]={'\0'}; // Local variables int i__, i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iwt; int left; extern int lsame_(char *, char *); int nbmin, iinfo; extern /* Subroutine */ int dorm2r_(char *, char *, int *, int *, int *, double *, int *, double *, double *, int *, double *, int *), dlarfb_(char *, char *, char *, char *, int *, int *, int *, double *, int *, double *, int *, double *, int *, double *, int * ), dlarft_(char *, char *, int *, int *, double *, int *, double * , double *, int *), xerbla_(char *, int *); extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *); int notran; int ldwork, lwkopt; int lquery; // // -- LAPACK computational routine (version 3.7.0) -- // -- LAPACK is a software package provided by Univ. of Tennessee, -- // -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- // December 2016 // // .. Scalar Arguments .. // .. // .. Array Arguments .. // .. // // ===================================================================== // // .. Parameters .. // .. // .. Local Scalars .. // .. // .. External Functions .. // .. // .. External Subroutines .. // .. // .. Intrinsic Functions .. // .. // .. Executable Statements .. // // Test the input arguments // // Parameter adjustments a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; // Function Body *info = 0; left = lsame_(side, "L"); notran = lsame_(trans, "N"); lquery = *lwork == -1; // // NQ is the order of Q and NW is the minimum dimension of WORK // if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! notran && ! lsame_(trans, "T")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } else if (*lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info == 0) { // // Compute the workspace requirements // // Computing MIN // Writing concatenation i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2); i__1 = 64, i__2 = ilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1); nb = min(i__1,i__2); lwkopt = max(1,nw) * nb + 4160; work[1] = (double) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DORMQR", &i__1); return 0; } else if (lquery) { return 0; } // // Quick return if possible // if (*m == 0 || *n == 0 || *k == 0) { work[1] = 1.; return 0; } nbmin = 2; ldwork = nw; if (nb > 1 && nb < *k) { if (*lwork < nw * nb + 4160) { nb = (*lwork - 4160) / ldwork; // Computing MAX // Writing concatenation i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2); i__1 = 2, i__2 = ilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1); nbmin = max(i__1,i__2); } } if (nb < nbmin || nb >= *k) { // // Use unblocked code // dorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], &iinfo); } else { // // Use blocked code // iwt = nw * nb + 1; if (left && ! notran || ! left && notran) { i1 = 1; i2 = *k; i3 = nb; } else { i1 = (*k - 1) / nb * nb + 1; i2 = 1; i3 = -nb; } if (left) { ni = *n; jc = 1; } else { mi = *m; ic = 1; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { // Computing MIN i__4 = nb, i__5 = *k - i__ + 1; ib = min(i__4,i__5); // // Form the triangular factor of the block reflector // H = H(i) H(i+1) . . . H(i+ib-1) // i__4 = nq - i__ + 1; dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[iwt], &c__65); if (left) { // // H or H**T is applied to C(i:m,1:n) // mi = *m - i__ + 1; ic = i__; } else { // // H or H**T is applied to C(1:m,i:n) // ni = *n - i__ + 1; jc = i__; } // // Apply H or H**T // dlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[ i__ + i__ * a_dim1], lda, &work[iwt], &c__65, &c__[ic + jc * c_dim1], ldc, &work[1], &ldwork); // L10: } } work[1] = (double) lwkopt; return 0; // // End of DORMQR // } // dormqr_