#include "opencv2/core/core.hpp" #include "opencv2/ml/ml.hpp" #include "opencv2/highgui/highgui.hpp" #include using namespace std; using namespace cv; const Scalar WHITE_COLOR = CV_RGB(255,255,255); const string winName = "points"; const int testStep = 5; Mat img, imgDst; RNG rng; vector trainedPoints; vector trainedPointsMarkers; vector classColors; #define NBC 0 // normal Bayessian classifier #define KNN 0 // k nearest neighbors classifier #define SVM 0 // support vectors machine #define DT 1 // decision tree #define BT 0 // ADA Boost #define GBT 1 // gradient boosted trees #define RF 0 // random forest #define ERT 0 // extremely randomized trees #define ANN 0 // artificial neural networks #define EM 0 // expectation-maximization void on_mouse( int event, int x, int y, int /*flags*/, void* ) { if( img.empty() ) return; int updateFlag = 0; if( event == CV_EVENT_LBUTTONUP ) { if( classColors.empty() ) return; trainedPoints.push_back( Point(x,y) ); trainedPointsMarkers.push_back( classColors.size()-1 ); updateFlag = true; } else if( event == CV_EVENT_RBUTTONUP ) { #if BT if( classColors.size() < 2 ) { #endif classColors.push_back( Scalar((uchar)rng(256), (uchar)rng(256), (uchar)rng(256)) ); updateFlag = true; #if BT } else cout << "New class can not be added, because CvBoost can only be used for 2-class classification" << endl; #endif } //draw if( updateFlag ) { img = Scalar::all(0); // put the text stringstream text; text << "current class " << classColors.size()-1; putText( img, text.str(), Point(10,25), CV_FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 ); text.str(""); text << "total classes " << classColors.size(); putText( img, text.str(), Point(10,50), CV_FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 ); text.str(""); text << "total points " << trainedPoints.size(); putText(img, text.str(), cvPoint(10,75), CV_FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 ); // draw points for( size_t i = 0; i < trainedPoints.size(); i++ ) circle( img, trainedPoints[i], 5, classColors[trainedPointsMarkers[i]], -1 ); imshow( winName, img ); } } void prepare_train_data( Mat& samples, Mat& classes ) { Mat( trainedPoints ).copyTo( samples ); Mat( trainedPointsMarkers ).copyTo( classes ); // reshape trainData and change its type samples = samples.reshape( 1, samples.rows ); samples.convertTo( samples, CV_32FC1 ); } #if NBC void find_decision_boundary_NBC() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvNormalBayesClassifier normalBayesClassifier( trainSamples, trainClasses ); Mat testSample( 1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)normalBayesClassifier.predict( testSample ); circle( imgDst, Point(x,y), 1, classColors[response] ); } } } #endif #if KNN void find_decision_boundary_KNN( int K ) { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvKNearest knnClassifier( trainSamples, trainClasses, Mat(), false, K ); Mat testSample( 1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)knnClassifier.find_nearest( testSample, K ); circle( imgDst, Point(x,y), 1, classColors[response] ); } } } #endif #if SVM void find_decision_boundary_SVM( CvSVMParams params ) { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvSVM svmClassifier( trainSamples, trainClasses, Mat(), Mat(), params ); Mat testSample( 1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)svmClassifier.predict( testSample ); circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ ) { const float* supportVector = svmClassifier.get_support_vector(i); circle( imgDst, Point(supportVector[0],supportVector[1]), 5, CV_RGB(255,255,255), -1 ); } } #endif #if DT void find_decision_boundary_DT() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvDTree dtree; Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); var_types.at( trainSamples.cols ) = CV_VAR_CATEGORICAL; CvDTreeParams params; params.max_depth = 8; params.min_sample_count = 2; params.use_surrogates = false; params.cv_folds = 0; // the number of cross-validation folds params.use_1se_rule = false; params.truncate_pruned_tree = false; dtree.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); Mat testSample(1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)dtree.predict( testSample )->value; circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } } #endif #if BT void find_decision_boundary_BT() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvBoost boost; Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); var_types.at( trainSamples.cols ) = CV_VAR_CATEGORICAL; CvBoostParams params( CvBoost::DISCRETE, // boost_type 100, // weak_count 0.95, // weight_trim_rate 2, // max_depth false, //use_surrogates 0 // priors ); boost.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); Mat testSample(1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)boost.predict( testSample ); circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } } #endif #if GBT void find_decision_boundary_GBT() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvGBTrees gbtrees; Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); var_types.at( trainSamples.cols ) = CV_VAR_CATEGORICAL; CvGBTreesParams params( CvGBTrees::SQUARED_LOSS, // loss_function_type 100, // weak_count 0.05f, // shrinkage 0.6f, // subsample_portion 2, // max_depth true // use_surrogates ) ); gbtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); Mat testSample(1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)gbtrees.predict( testSample ); circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } } #endif #if RF void find_decision_boundary_RF() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvRTrees rtrees; Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); var_types.at( trainSamples.cols ) = CV_VAR_CATEGORICAL; CvRTParams params( 4, // max_depth, 2, // min_sample_count, 0.f, // regression_accuracy, false, // use_surrogates, 16, // max_categories, 0, // priors, false, // calc_var_importance, 1, // nactive_vars, 5, // max_num_of_trees_in_the_forest, 0, // forest_accuracy, CV_TERMCRIT_ITER // termcrit_type ); rtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); Mat testSample(1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)rtrees.predict( testSample ); circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } } #endif #if ERT void find_decision_boundary_ERT() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // learn classifier CvERTrees ertrees; Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); var_types.at( trainSamples.cols ) = CV_VAR_CATEGORICAL; CvRTParams params( 4, // max_depth, 2, // min_sample_count, 0.f, // regression_accuracy, false, // use_surrogates, 16, // max_categories, 0, // priors, false, // calc_var_importance, 1, // nactive_vars, 5, // max_num_of_trees_in_the_forest, 0, // forest_accuracy, CV_TERMCRIT_ITER // termcrit_type ); ertrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); Mat testSample(1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)ertrees.predict( testSample ); circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } } #endif #if ANN void find_decision_boundary_ANN( const Mat& layer_sizes ) { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); // prerare trainClasses trainClasses.create( trainedPoints.size(), classColors.size(), CV_32FC1 ); for( int i = 0; i < trainClasses.rows; i++ ) { for( int k = 0; k < trainClasses.cols; k++ ) { if( k == trainedPointsMarkers[i] ) trainClasses.at(i,k) = 1; else trainClasses.at(i,k) = 0; } } Mat weights( 1, trainedPoints.size(), CV_32FC1, Scalar::all(1) ); // learn classifier CvANN_MLP ann( layer_sizes, CvANN_MLP::SIGMOID_SYM, 1, 1 ); ann.train( trainSamples, trainClasses, weights ); Mat testSample( 1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; Mat outputs( 1, classColors.size(), CV_32FC1, testSample.data ); ann.predict( testSample, outputs ); Point maxLoc; minMaxLoc( outputs, 0, 0, 0, &maxLoc ); circle( imgDst, Point(x,y), 2, classColors[maxLoc.x], 1 ); } } } #endif #if EM void find_decision_boundary_EM() { img.copyTo( imgDst ); Mat trainSamples, trainClasses; prepare_train_data( trainSamples, trainClasses ); CvEM em; CvEMParams params; params.covs = NULL; params.means = NULL; params.weights = NULL; params.probs = NULL; params.nclusters = classColors.size(); params.cov_mat_type = CvEM::COV_MAT_GENERIC; params.start_step = CvEM::START_AUTO_STEP; params.term_crit.max_iter = 10; params.term_crit.epsilon = 0.1; params.term_crit.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS; // learn classifier em.train( trainSamples, Mat(), params, &trainClasses ); Mat testSample(1, 2, CV_32FC1 ); for( int y = 0; y < img.rows; y += testStep ) { for( int x = 0; x < img.cols; x += testStep ) { testSample.at(0) = (float)x; testSample.at(1) = (float)y; int response = (int)em.predict( testSample ); circle( imgDst, Point(x,y), 2, classColors[response], 1 ); } } } #endif int main() { cout << "Use:" << endl << " right mouse button - to add new class;" << endl << " left mouse button - to add new point;" << endl << " key 'r' - to run the ML model;" << endl << " key 'i' - to init (clear) the data." << endl << endl; cv::namedWindow( "points", 1 ); img.create( 480, 640, CV_8UC3 ); imgDst.create( 480, 640, CV_8UC3 ); imshow( "points", img ); cvSetMouseCallback( "points", on_mouse ); for(;;) { uchar key = waitKey(); if( key == 27 ) break; if( key == 'i' ) // init { img = Scalar::all(0); classColors.clear(); trainedPoints.clear(); trainedPointsMarkers.clear(); imshow( winName, img ); } if( key == 'r' ) // run { #if NBC find_decision_boundary_NBC(); cvNamedWindow( "NormalBayesClassifier", WINDOW_AUTOSIZE ); imshow( "NormalBayesClassifier", imgDst ); #endif #if KNN int K = 3; find_decision_boundary_KNN( K ); namedWindow( "kNN", WINDOW_AUTOSIZE ); imshow( "kNN", imgDst ); K = 15; find_decision_boundary_KNN( K ); namedWindow( "kNN2", WINDOW_AUTOSIZE ); imshow( "kNN2", imgDst ); #endif #if SVM //(1)-(2)separable and not sets CvSVMParams params; params.svm_type = CvSVM::C_SVC; params.kernel_type = CvSVM::POLY; //CvSVM::LINEAR; params.degree = 0.5; params.gamma = 1; params.coef0 = 1; params.C = 1; params.nu = 0.5; params.p = 0; params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.01); find_decision_boundary_SVM( params ); namedWindow( "classificationSVM1", WINDOW_AUTOSIZE ); imshow( "classificationSVM1", imgDst ); params.C = 10; find_decision_boundary_SVM( params ); cvNamedWindow( "classificationSVM2", WINDOW_AUTOSIZE ); imshow( "classificationSVM2", imgDst ); #endif #if DT find_decision_boundary_DT(); namedWindow( "DT", 1 ); imshow( "DT", imgDst ); #endif #if BT find_decision_boundary_BT(); namedWindow( "BT", 1 ); imshow( "BT", imgDst); #endif #if GBT find_decision_boundary_GBT(); namedWindow( "GBT", 1 ); imshow( "GBT", imgDst); #endif #if RF find_decision_boundary_RF(); namedWindow( "RF", 1 ); imshow( "RF", imgDst); #endif #if ERT find_decision_boundary_ERT(); namedWindow( "ERT", 1 ); imshow( "ERT", imgDst); #endif #if ANN Mat layer_sizes1( 1, 3, CV_32SC1 ); layer_sizes1.at(0) = 2; layer_sizes1.at(1) = 5; layer_sizes1.at(2) = classColors.size(); find_decision_boundary_ANN( layer_sizes1 ); namedWindow( "ANN", WINDOW_AUTOSIZE ); imshow( "ANN", imgDst ); #endif #if EM find_decision_boundary_EM(); namedWindow( "EM", WINDOW_AUTOSIZE ); imshow( "EM", imgDst ); #endif } } return 1; }