#pragma once namespace cv { #define CC_CASCADE_PARAMS "cascadeParams" #define CC_STAGE_TYPE "stageType" #define CC_FEATURE_TYPE "featureType" #define CC_HEIGHT "height" #define CC_WIDTH "width" #define CC_STAGE_NUM "stageNum" #define CC_STAGES "stages" #define CC_STAGE_PARAMS "stageParams" #define CC_BOOST "BOOST" #define CC_MAX_DEPTH "maxDepth" #define CC_WEAK_COUNT "maxWeakCount" #define CC_STAGE_THRESHOLD "stageThreshold" #define CC_WEAK_CLASSIFIERS "weakClassifiers" #define CC_INTERNAL_NODES "internalNodes" #define CC_LEAF_VALUES "leafValues" #define CC_FEATURES "features" #define CC_FEATURE_PARAMS "featureParams" #define CC_MAX_CAT_COUNT "maxCatCount" #define CC_HAAR "HAAR" #define CC_RECTS "rects" #define CC_TILTED "tilted" #define CC_LBP "LBP" #define CC_RECT "rect" #define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \ /* (x, y) */ \ (p0) = sum + (rect).x + (step) * (rect).y, \ /* (x + w, y) */ \ (p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \ /* (x + w, y) */ \ (p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \ /* (x + w, y + h) */ \ (p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height) #define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \ /* (x, y) */ \ (p0) = tilted + (rect).x + (step) * (rect).y, \ /* (x - h, y + h) */ \ (p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \ /* (x + w, y + w) */ \ (p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \ /* (x + w - h, y + w + h) */ \ (p3) = tilted + (rect).x + (rect).width - (rect).height \ + (step) * ((rect).y + (rect).width + (rect).height) #define CALC_SUM_(p0, p1, p2, p3, offset) \ ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset]) #define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset) //---------------------------------------------- HaarEvaluator --------------------------------------- class HaarEvaluator : public FeatureEvaluator { public: struct Feature { Feature(); float calc( int offset ) const; void updatePtrs( const Mat& sum ); bool read( const FileNode& node ); bool tilted; enum { RECT_NUM = 3 }; struct { Rect r; float weight; } rect[RECT_NUM]; const int* p[RECT_NUM][4]; }; HaarEvaluator(); virtual ~HaarEvaluator(); virtual bool read( const FileNode& node ); virtual Ptr clone() const; virtual int getFeatureType() const { return FeatureEvaluator::HAAR; } virtual bool setImage(const Mat&, Size origWinSize); virtual bool setWindow(Point pt); double operator()(int featureIdx) const { return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; } virtual double calcOrd(int featureIdx) const { return (*this)(featureIdx); } protected: Size origWinSize; Ptr > features; Feature* featuresPtr; // optimization bool hasTiltedFeatures; Mat sum0, sqsum0, tilted0; Mat sum, sqsum, tilted; Rect normrect; const int *p[4]; const double *pq[4]; int offset; double varianceNormFactor; }; inline HaarEvaluator::Feature :: Feature() { tilted = false; rect[0].r = rect[1].r = rect[2].r = Rect(); rect[0].weight = rect[1].weight = rect[2].weight = 0; p[0][0] = p[0][1] = p[0][2] = p[0][3] = p[1][0] = p[1][1] = p[1][2] = p[1][3] = p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0; } inline float HaarEvaluator::Feature :: calc( int offset ) const { float ret = rect[0].weight * CALC_SUM(p[0], offset) + rect[1].weight * CALC_SUM(p[1], offset); if( rect[2].weight != 0.0f ) ret += rect[2].weight * CALC_SUM(p[2], offset); return ret; } inline void HaarEvaluator::Feature :: updatePtrs( const Mat& sum ) { const int* ptr = (const int*)sum.data; size_t step = sum.step/sizeof(ptr[0]); if (tilted) { CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step ); CV_TILTED_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step ); if (rect[2].weight) CV_TILTED_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step ); } else { CV_SUM_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step ); CV_SUM_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step ); if (rect[2].weight) CV_SUM_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step ); } } //---------------------------------------------- LBPEvaluator ------------------------------------- class LBPEvaluator : public FeatureEvaluator { public: struct Feature { Feature(); Feature( int x, int y, int _block_w, int _block_h ) : rect(x, y, _block_w, _block_h) {} int calc( int offset ) const; void updatePtrs( const Mat& sum ); bool read(const FileNode& node ); Rect rect; // weight and height for block const int* p[16]; // fast }; LBPEvaluator(); virtual ~LBPEvaluator(); virtual bool read( const FileNode& node ); virtual Ptr clone() const; virtual int getFeatureType() const { return FeatureEvaluator::LBP; } virtual bool setImage(const Mat& image, Size _origWinSize); virtual bool setWindow(Point pt); int operator()(int featureIdx) const { return featuresPtr[featureIdx].calc(offset); } virtual int calcCat(int featureIdx) const { return (*this)(featureIdx); } protected: Size origWinSize; Ptr > features; Feature* featuresPtr; // optimization Mat sum0, sum; Rect normrect; int offset; }; inline LBPEvaluator::Feature :: Feature() { rect = Rect(); for( int i = 0; i < 16; i++ ) p[i] = 0; } inline int LBPEvaluator::Feature :: calc( int offset ) const { int cval = CALC_SUM_( p[5], p[6], p[9], p[10], offset ); return (CALC_SUM_( p[0], p[1], p[4], p[5], offset ) >= cval ? 128 : 0) | // 0 (CALC_SUM_( p[1], p[2], p[5], p[6], offset ) >= cval ? 64 : 0) | // 1 (CALC_SUM_( p[2], p[3], p[6], p[7], offset ) >= cval ? 32 : 0) | // 2 (CALC_SUM_( p[6], p[7], p[10], p[11], offset ) >= cval ? 16 : 0) | // 5 (CALC_SUM_( p[10], p[11], p[14], p[15], offset ) >= cval ? 8 : 0)| // 8 (CALC_SUM_( p[9], p[10], p[13], p[14], offset ) >= cval ? 4 : 0)| // 7 (CALC_SUM_( p[8], p[9], p[12], p[13], offset ) >= cval ? 2 : 0)| // 6 (CALC_SUM_( p[4], p[5], p[8], p[9], offset ) >= cval ? 1 : 0); } inline void LBPEvaluator::Feature :: updatePtrs( const Mat& sum ) { const int* ptr = (const int*)sum.data; size_t step = sum.step/sizeof(ptr[0]); Rect tr = rect; CV_SUM_PTRS( p[0], p[1], p[4], p[5], ptr, tr, step ); tr.x += 2*rect.width; CV_SUM_PTRS( p[2], p[3], p[6], p[7], ptr, tr, step ); tr.y += 2*rect.height; CV_SUM_PTRS( p[10], p[11], p[14], p[15], ptr, tr, step ); tr.x -= 2*rect.width; CV_SUM_PTRS( p[8], p[9], p[12], p[13], ptr, tr, step ); } //---------------------------------------------- predictor functions ------------------------------------- template inline int predictOrdered( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; for( int si = 0; si < nstages; si++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi]; int idx = 0, root = nodeOfs; do { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx]; double val = featureEvaluator(node.featureIdx); idx = val < node.threshold ? node.left : node.right; } while( idx > 0 ); sum += cascadeLeaves[leafOfs - idx]; nodeOfs += weak.nodeCount; leafOfs += weak.nodeCount + 1; } if( sum < stage.threshold ) return -si; } return 1; } template inline int predictCategorical( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; size_t subsetSize = (cascade.data.ncategories + 31)/32; int* cascadeSubsets = &cascade.data.subsets[0]; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; for(int si = 0; si < nstages; si++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi]; int idx = 0, root = nodeOfs; do { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx]; int c = featureEvaluator(node.featureIdx); const int* subset = &cascadeSubsets[(root + idx)*subsetSize]; idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right; } while( idx > 0 ); sum += cascadeLeaves[leafOfs - idx]; nodeOfs += weak.nodeCount; leafOfs += weak.nodeCount + 1; } if( sum < stage.threshold ) return -si; } return 1; } template inline int predictOrderedStump( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; int nstages = (int)cascade.data.stages.size(); for( int stageIdx = 0; stageIdx < nstages; stageIdx++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx]; sum = 0.0; int ntrees = stage.ntrees; for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 ) { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; double value = featureEvaluator(node.featureIdx); sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ]; } if( sum < stage.threshold ) return -stageIdx; } return 1; } template inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; size_t subsetSize = (cascade.data.ncategories + 31)/32; int* cascadeSubsets = &cascade.data.subsets[0]; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; #ifdef HAVE_TEGRA_OPTIMIZATION float tmp; // float accumulator -- float operations are quicker #endif for( int si = 0; si < nstages; si++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; #ifdef HAVE_TEGRA_OPTIMIZATION tmp = 0; #else sum = 0; #endif for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; int c = featureEvaluator(node.featureIdx); const int* subset = &cascadeSubsets[nodeOfs*subsetSize]; #ifdef HAVE_TEGRA_OPTIMIZATION tmp += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1]; #else sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1]; #endif nodeOfs++; leafOfs += 2; } #ifdef HAVE_TEGRA_OPTIMIZATION if( tmp < stage.threshold ) { sum = (double)tmp; return -si; } #else if( sum < stage.threshold ) return -si; #endif } #ifdef HAVE_TEGRA_OPTIMIZATION sum = (double)tmp; #endif return 1; } }