/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" namespace cv { template struct Integral_SIMD { bool operator()(const T *, size_t, ST *, size_t, QT *, size_t, ST *, size_t, int, int, int) const { return false; } }; #if CV_SSE2 template <> struct Integral_SIMD { Integral_SIMD() { haveSSE2 = checkHardwareSupport(CV_CPU_SSE2); } bool operator()(const uchar * src, size_t _srcstep, int * sum, size_t _sumstep, double * sqsum, size_t, int * tilted, size_t, int width, int height, int cn) const { if (sqsum || tilted || cn != 1 || !haveSSE2) return false; // the first iteration memset(sum, 0, (width + 1) * sizeof(int)); __m128i v_zero = _mm_setzero_si128(), prev = v_zero; int j = 0; // the others for (int i = 0; i < height; ++i) { const uchar * src_row = src + _srcstep * i; int * prev_sum_row = (int *)((uchar *)sum + _sumstep * i) + 1; int * sum_row = (int *)((uchar *)sum + _sumstep * (i + 1)) + 1; sum_row[-1] = 0; prev = v_zero; j = 0; for ( ; j + 7 < width; j += 8) { __m128i vsuml = _mm_loadu_si128((const __m128i *)(prev_sum_row + j)); __m128i vsumh = _mm_loadu_si128((const __m128i *)(prev_sum_row + j + 4)); __m128i el8shr0 = _mm_loadl_epi64((const __m128i *)(src_row + j)); __m128i el8shr1 = _mm_slli_si128(el8shr0, 1); __m128i el8shr2 = _mm_slli_si128(el8shr0, 2); __m128i el8shr3 = _mm_slli_si128(el8shr0, 3); vsuml = _mm_add_epi32(vsuml, prev); vsumh = _mm_add_epi32(vsumh, prev); __m128i el8shr12 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr1, v_zero), _mm_unpacklo_epi8(el8shr2, v_zero)); __m128i el8shr03 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr0, v_zero), _mm_unpacklo_epi8(el8shr3, v_zero)); __m128i el8 = _mm_add_epi16(el8shr12, el8shr03); __m128i el4h = _mm_add_epi16(_mm_unpackhi_epi16(el8, v_zero), _mm_unpacklo_epi16(el8, v_zero)); vsuml = _mm_add_epi32(vsuml, _mm_unpacklo_epi16(el8, v_zero)); vsumh = _mm_add_epi32(vsumh, el4h); _mm_storeu_si128((__m128i *)(sum_row + j), vsuml); _mm_storeu_si128((__m128i *)(sum_row + j + 4), vsumh); prev = _mm_add_epi32(prev, _mm_shuffle_epi32(el4h, _MM_SHUFFLE(3, 3, 3, 3))); } for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < width; ++j) sum_row[j] = (v += src_row[j]) + prev_sum_row[j]; } return true; } bool haveSSE2; }; #endif template void integral_( const T* src, size_t _srcstep, ST* sum, size_t _sumstep, QT* sqsum, size_t _sqsumstep, ST* tilted, size_t _tiltedstep, int width, int height, int cn ) { int x, y, k; if (Integral_SIMD()(src, _srcstep, sum, _sumstep, sqsum, _sqsumstep, tilted, _tiltedstep, width, height, cn)) return; int srcstep = (int)(_srcstep/sizeof(T)); int sumstep = (int)(_sumstep/sizeof(ST)); int tiltedstep = (int)(_tiltedstep/sizeof(ST)); int sqsumstep = (int)(_sqsumstep/sizeof(QT)); width *= cn; memset( sum, 0, (width+cn)*sizeof(sum[0])); sum += sumstep + cn; if( sqsum ) { memset( sqsum, 0, (width+cn)*sizeof(sqsum[0])); sqsum += sqsumstep + cn; } if( tilted ) { memset( tilted, 0, (width+cn)*sizeof(tilted[0])); tilted += tiltedstep + cn; } if( sqsum == 0 && tilted == 0 ) { for( y = 0; y < height; y++, src += srcstep - cn, sum += sumstep - cn ) { for( k = 0; k < cn; k++, src++, sum++ ) { ST s = sum[-cn] = 0; for( x = 0; x < width; x += cn ) { s += src[x]; sum[x] = sum[x - sumstep] + s; } } } } else if( tilted == 0 ) { for( y = 0; y < height; y++, src += srcstep - cn, sum += sumstep - cn, sqsum += sqsumstep - cn ) { for( k = 0; k < cn; k++, src++, sum++, sqsum++ ) { ST s = sum[-cn] = 0; QT sq = sqsum[-cn] = 0; for( x = 0; x < width; x += cn ) { T it = src[x]; s += it; sq += (QT)it*it; ST t = sum[x - sumstep] + s; QT tq = sqsum[x - sqsumstep] + sq; sum[x] = t; sqsum[x] = tq; } } } } else { AutoBuffer _buf(width+cn); ST* buf = _buf; ST s; QT sq; for( k = 0; k < cn; k++, src++, sum++, tilted++, buf++ ) { sum[-cn] = tilted[-cn] = 0; for( x = 0, s = 0, sq = 0; x < width; x += cn ) { T it = src[x]; buf[x] = tilted[x] = it; s += it; sq += (QT)it*it; sum[x] = s; if( sqsum ) sqsum[x] = sq; } if( width == cn ) buf[cn] = 0; if( sqsum ) { sqsum[-cn] = 0; sqsum++; } } for( y = 1; y < height; y++ ) { src += srcstep - cn; sum += sumstep - cn; tilted += tiltedstep - cn; buf += -cn; if( sqsum ) sqsum += sqsumstep - cn; for( k = 0; k < cn; k++, src++, sum++, tilted++, buf++ ) { T it = src[0]; ST t0 = s = it; QT tq0 = sq = (QT)it*it; sum[-cn] = 0; if( sqsum ) sqsum[-cn] = 0; tilted[-cn] = tilted[-tiltedstep]; sum[0] = sum[-sumstep] + t0; if( sqsum ) sqsum[0] = sqsum[-sqsumstep] + tq0; tilted[0] = tilted[-tiltedstep] + t0 + buf[cn]; for( x = cn; x < width - cn; x += cn ) { ST t1 = buf[x]; buf[x - cn] = t1 + t0; t0 = it = src[x]; tq0 = (QT)it*it; s += t0; sq += tq0; sum[x] = sum[x - sumstep] + s; if( sqsum ) sqsum[x] = sqsum[x - sqsumstep] + sq; t1 += buf[x + cn] + t0 + tilted[x - tiltedstep - cn]; tilted[x] = t1; } if( width > cn ) { ST t1 = buf[x]; buf[x - cn] = t1 + t0; t0 = it = src[x]; tq0 = (QT)it*it; s += t0; sq += tq0; sum[x] = sum[x - sumstep] + s; if( sqsum ) sqsum[x] = sqsum[x - sqsumstep] + sq; tilted[x] = t0 + t1 + tilted[x - tiltedstep - cn]; buf[x] = t0; } if( sqsum ) sqsum++; } } } } #ifdef HAVE_OPENCL static bool ocl_integral( InputArray _src, OutputArray _sum, int sdepth ) { bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if ( (_src.type() != CV_8UC1) || !(sdepth == CV_32S || sdepth == CV_32F || (doubleSupport && sdepth == CV_64F))) return false; static const int tileSize = 16; String build_opt = format("-D sumT=%s -D LOCAL_SUM_SIZE=%d%s", ocl::typeToStr(sdepth), tileSize, doubleSupport ? " -D DOUBLE_SUPPORT" : ""); ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt); if (kcols.empty()) return false; UMat src = _src.getUMat(); Size src_size = src.size(); Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize); UMat buf(bufsize, sdepth); kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf)); size_t gt = src.cols, lt = tileSize; if (!kcols.run(1, >, <, false)) return false; ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt); if (krows.empty()) return false; Size sumsize(src_size.width + 1, src_size.height + 1); _sum.create(sumsize, sdepth); UMat sum = _sum.getUMat(); krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::WriteOnly(sum)); gt = src.rows; return krows.run(1, >, <, false); } static bool ocl_integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, int sdepth, int sqdepth ) { bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if ( _src.type() != CV_8UC1 || (!doubleSupport && (sdepth == CV_64F || sqdepth == CV_64F)) ) return false; static const int tileSize = 16; String build_opt = format("-D SUM_SQUARE -D sumT=%s -D sumSQT=%s -D LOCAL_SUM_SIZE=%d%s", ocl::typeToStr(sdepth), ocl::typeToStr(sqdepth), tileSize, doubleSupport ? " -D DOUBLE_SUPPORT" : ""); ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt); if (kcols.empty()) return false; UMat src = _src.getUMat(); Size src_size = src.size(); Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize); UMat buf(bufsize, sdepth); UMat buf_sq(bufsize, sqdepth); kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf), ocl::KernelArg::WriteOnlyNoSize(buf_sq)); size_t gt = src.cols, lt = tileSize; if (!kcols.run(1, >, <, false)) return false; ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt); if (krows.empty()) return false; Size sumsize(src_size.width + 1, src_size.height + 1); _sum.create(sumsize, sdepth); UMat sum = _sum.getUMat(); _sqsum.create(sumsize, sqdepth); UMat sum_sq = _sqsum.getUMat(); krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::ReadOnlyNoSize(buf_sq), ocl::KernelArg::WriteOnly(sum), ocl::KernelArg::WriteOnlyNoSize(sum_sq)); gt = src.rows; return krows.run(1, >, <, false); } #endif } #if defined(HAVE_IPP) namespace cv { static bool ipp_integral( int depth, int sdepth, int sqdepth, const uchar* src, size_t srcstep, uchar* sum, size_t sumstep, uchar* sqsum, size_t sqsumstep, uchar* tilted, size_t tstep, int width, int height, int cn) { CV_INSTRUMENT_REGION_IPP() IppiSize size = {width, height}; if(cn > 1) return false; if(tilted) { CV_UNUSED(tstep); return false; } if(!sqsum) { if(depth == CV_8U && sdepth == CV_32S) return CV_INSTRUMENT_FUN_IPP(ippiIntegral_8u32s_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32s*)sum, (int)sumstep, size, 0) >= 0; else if(depth == CV_8UC1 && sdepth == CV_32F) return CV_INSTRUMENT_FUN_IPP(ippiIntegral_8u32f_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32f*)sum, (int)sumstep, size, 0) >= 0; else if(depth == CV_32FC1 && sdepth == CV_32F) return CV_INSTRUMENT_FUN_IPP(ippiIntegral_32f_C1R, (const Ipp32f*)src, (int)srcstep, (Ipp32f*)sum, (int)sumstep, size) >= 0; else return false; } else { if(depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32S) return CV_INSTRUMENT_FUN_IPP(ippiSqrIntegral_8u32s_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32s*)sum, (int)sumstep, (Ipp32s*)sqsum, (int)sqsumstep, size, 0, 0) >= 0; else if(depth == CV_8U && sdepth == CV_32S && sqdepth == CV_64F) return CV_INSTRUMENT_FUN_IPP(ippiSqrIntegral_8u32s64f_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32s*)sum, (int)sumstep, (Ipp64f*)sqsum, (int)sqsumstep, size, 0, 0) >= 0; else if(depth == CV_8U && sdepth == CV_32F && sqdepth == CV_64F) return CV_INSTRUMENT_FUN_IPP(ippiSqrIntegral_8u32f64f_C1R, (const Ipp8u*)src, (int)srcstep, (Ipp32f*)sum, (int)sumstep, (Ipp64f*)sqsum, (int)sqsumstep, size, 0, 0) >= 0; else return false; } } } #endif namespace cv { namespace hal { void integral(int depth, int sdepth, int sqdepth, const uchar* src, size_t srcstep, uchar* sum, size_t sumstep, uchar* sqsum, size_t sqsumstep, uchar* tilted, size_t tstep, int width, int height, int cn) { CALL_HAL(integral, cv_hal_integral, depth, sdepth, sqdepth, src, srcstep, sum, sumstep, sqsum, sqsumstep, tilted, tstep, width, height, cn); CV_IPP_RUN_FAST(ipp_integral(depth, sdepth, sqdepth, src, srcstep, sum, sumstep, sqsum, sqsumstep, tilted, tstep, width, height, cn)); #define ONE_CALL(A, B, C) integral_((const A*)src, srcstep, (B*)sum, sumstep, (C*)sqsum, sqsumstep, (B*)tilted, tstep, width, height, cn) if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_64F ) ONE_CALL(uchar, int, double); else if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32F ) ONE_CALL(uchar, int, float); else if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32S ) ONE_CALL(uchar, int, int); else if( depth == CV_8U && sdepth == CV_32F && sqdepth == CV_64F ) ONE_CALL(uchar, float, double); else if( depth == CV_8U && sdepth == CV_32F && sqdepth == CV_32F ) ONE_CALL(uchar, float, float); else if( depth == CV_8U && sdepth == CV_64F && sqdepth == CV_64F ) ONE_CALL(uchar, double, double); else if( depth == CV_16U && sdepth == CV_64F && sqdepth == CV_64F ) ONE_CALL(ushort, double, double); else if( depth == CV_16S && sdepth == CV_64F && sqdepth == CV_64F ) ONE_CALL(short, double, double); else if( depth == CV_32F && sdepth == CV_32F && sqdepth == CV_64F ) ONE_CALL(float, float, double); else if( depth == CV_32F && sdepth == CV_32F && sqdepth == CV_32F ) ONE_CALL(float, float, float); else if( depth == CV_32F && sdepth == CV_64F && sqdepth == CV_64F ) ONE_CALL(float, double, double); else if( depth == CV_64F && sdepth == CV_64F && sqdepth == CV_64F ) ONE_CALL(double, double, double); else CV_Error( CV_StsUnsupportedFormat, "" ); #undef ONE_CALL } }} // cv::hal:: void cv::integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, OutputArray _tilted, int sdepth, int sqdepth ) { CV_INSTRUMENT_REGION() int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if( sdepth <= 0 ) sdepth = depth == CV_8U ? CV_32S : CV_64F; if ( sqdepth <= 0 ) sqdepth = CV_64F; sdepth = CV_MAT_DEPTH(sdepth), sqdepth = CV_MAT_DEPTH(sqdepth); #ifdef HAVE_OPENCL if (ocl::useOpenCL() && _sum.isUMat() && !_tilted.needed()) { if (!_sqsum.needed()) { CV_OCL_RUN(ocl::useOpenCL(), ocl_integral(_src, _sum, sdepth)) } else if (_sqsum.isUMat()) CV_OCL_RUN(ocl::useOpenCL(), ocl_integral(_src, _sum, _sqsum, sdepth, sqdepth)) } #endif Size ssize = _src.size(), isize(ssize.width + 1, ssize.height + 1); _sum.create( isize, CV_MAKETYPE(sdepth, cn) ); Mat src = _src.getMat(), sum =_sum.getMat(), sqsum, tilted; if( _sqsum.needed() ) { _sqsum.create( isize, CV_MAKETYPE(sqdepth, cn) ); sqsum = _sqsum.getMat(); }; if( _tilted.needed() ) { _tilted.create( isize, CV_MAKETYPE(sdepth, cn) ); tilted = _tilted.getMat(); } hal::integral(depth, sdepth, sqdepth, src.ptr(), src.step, sum.ptr(), sum.step, sqsum.ptr(), sqsum.step, tilted.ptr(), tilted.step, src.cols, src.rows, cn); } void cv::integral( InputArray src, OutputArray sum, int sdepth ) { CV_INSTRUMENT_REGION() integral( src, sum, noArray(), noArray(), sdepth ); } void cv::integral( InputArray src, OutputArray sum, OutputArray sqsum, int sdepth, int sqdepth ) { CV_INSTRUMENT_REGION() integral( src, sum, sqsum, noArray(), sdepth, sqdepth ); } CV_IMPL void cvIntegral( const CvArr* image, CvArr* sumImage, CvArr* sumSqImage, CvArr* tiltedSumImage ) { cv::Mat src = cv::cvarrToMat(image), sum = cv::cvarrToMat(sumImage), sum0 = sum; cv::Mat sqsum0, sqsum, tilted0, tilted; cv::Mat *psqsum = 0, *ptilted = 0; if( sumSqImage ) { sqsum0 = sqsum = cv::cvarrToMat(sumSqImage); psqsum = &sqsum; } if( tiltedSumImage ) { tilted0 = tilted = cv::cvarrToMat(tiltedSumImage); ptilted = &tilted; } cv::integral( src, sum, psqsum ? cv::_OutputArray(*psqsum) : cv::_OutputArray(), ptilted ? cv::_OutputArray(*ptilted) : cv::_OutputArray(), sum.depth() ); CV_Assert( sum.data == sum0.data && sqsum.data == sqsum0.data && tilted.data == tilted0.data ); } /* End of file. */