#include "perf_precomp.hpp" #include "opencv2/core/core_c.h" using namespace std; using namespace cv; using namespace perf; /* // Scalar sum(InputArray arr) */ PERF_TEST_P( Size_MatType, sum, TYPICAL_MATS ) { Size sz = std::tr1::get<0>(GetParam()); int type = std::tr1::get<1>(GetParam()); Mat arr(sz, type); Scalar s; declare.in(arr, WARMUP_RNG); TEST_CYCLE(100) { s = sum(arr); } SANITY_CHECK(s); } /* // Scalar mean(InputArray src) */ PERF_TEST_P( Size_MatType, mean, TYPICAL_MATS ) { Size sz = std::tr1::get<0>(GetParam()); int type = std::tr1::get<1>(GetParam()); Mat src(sz, type); Scalar s; declare.in(src, WARMUP_RNG); TEST_CYCLE(100) { s = mean(src); } SANITY_CHECK(s); } /* // Scalar mean(InputArray src, InputArray mask=noArray()) */ PERF_TEST_P( Size_MatType, mean_mask, TYPICAL_MATS ) { Size sz = std::tr1::get<0>(GetParam()); int type = std::tr1::get<1>(GetParam()); Mat src(sz, type); Mat mask = Mat::ones(src.size(), CV_8U); Scalar s; declare.in(src, WARMUP_RNG).in(mask); TEST_CYCLE(100) { s = mean(src, mask); } SANITY_CHECK(s); } CV_FLAGS(NormType, NORM_INF, NORM_L1, NORM_L2, NORM_TYPE_MASK, NORM_RELATIVE, NORM_MINMAX) typedef std::tr1::tuple Size_MatType_NormType_t; typedef perf::TestBaseWithParam Size_MatType_NormType; /* // double norm(InputArray src1, int normType=NORM_L2) */ PERF_TEST_P( Size_MatType_NormType, norm, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src1(sz, matType); double n; declare.in(src1, WARMUP_RNG); TEST_CYCLE(100) { n = norm(src1, normType); } SANITY_CHECK(n); } /* // double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray()) */ PERF_TEST_P( Size_MatType_NormType, norm_mask, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src1(sz, matType); Mat mask = Mat::ones(sz, CV_8U); double n; declare.in(src1, WARMUP_RNG).in(mask); TEST_CYCLE(100) { n = norm(src1, normType, mask); } SANITY_CHECK(n); } /* // double norm(InputArray src1, InputArray src2, int normType) */ PERF_TEST_P( Size_MatType_NormType, norm2, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2, (int)(NORM_RELATIVE+NORM_INF), (int)(NORM_RELATIVE+NORM_L1), (int)(NORM_RELATIVE+NORM_L2) ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src1(sz, matType); Mat src2(sz, matType); double n; declare.in(src1, src2, WARMUP_RNG); TEST_CYCLE(100) { n = norm(src1, src2, normType); } SANITY_CHECK(n); } /* // double norm(InputArray src1, InputArray src2, int normType, InputArray mask=noArray()) */ PERF_TEST_P( Size_MatType_NormType, norm2_mask, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2, (int)(NORM_RELATIVE+NORM_INF), (int)(NORM_RELATIVE+NORM_L1), (int)(NORM_RELATIVE+NORM_L2) ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src1(sz, matType); Mat src2(sz, matType); Mat mask = Mat::ones(sz, CV_8U); double n; declare.in(src1, src2, WARMUP_RNG).in(mask); TEST_CYCLE(100) { n = norm(src1, src2, normType, mask); } SANITY_CHECK(n); } /* // void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2) */ PERF_TEST_P( Size_MatType_NormType, normalize, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src(sz, matType); Mat dst(sz, matType); double alpha = 100.; if(normType==NORM_L1) alpha = (double)src.total() * src.channels(); if(normType==NORM_L2) alpha = (double)src.total()/10; declare.in(src, WARMUP_RNG).out(dst); TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType); } SANITY_CHECK(dst); } /* // void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1, InputArray mask=noArray()) */ PERF_TEST_P( Size_MatType_NormType, normalize_mask, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src(sz, matType); Mat dst(sz, matType); Mat mask = Mat::ones(sz, CV_8U); double alpha = 100.; if(normType==NORM_L1) alpha = (double)src.total() * src.channels(); if(normType==NORM_L2) alpha = (double)src.total()/10; declare.in(src, WARMUP_RNG).in(mask).out(dst); TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType, -1, mask); } SANITY_CHECK(dst); } /* // void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1) */ PERF_TEST_P( Size_MatType_NormType, normalize_32f, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::Values( (int)NORM_INF, (int)NORM_L1, (int)NORM_L2 ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int normType = std::tr1::get<2>(GetParam()); Mat src(sz, matType); Mat dst(sz, matType); double alpha = 100.; if(normType==NORM_L1) alpha = (double)src.total() * src.channels(); if(normType==NORM_L2) alpha = (double)src.total()/10; declare.in(src, WARMUP_RNG).out(dst); TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType, CV_32F); } SANITY_CHECK(dst); } /* // void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2) */ PERF_TEST_P( Size_MatType, normalize_minmax, TYPICAL_MATS ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); Mat src(sz, matType); randu(src, 0, 256); Mat dst(sz, matType); declare.in(src).out(dst); TEST_CYCLE(100) { normalize(src, dst, 20., 100., NORM_MINMAX); } SANITY_CHECK(dst); } /* // void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev) */ PERF_TEST_P( Size_MatType, meanStdDev, TYPICAL_MATS ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); Mat src(sz, matType); Mat mean, dev; declare.in(src, WARMUP_RNG); TEST_CYCLE(100) { meanStdDev(src, mean, dev); } SANITY_CHECK(mean); SANITY_CHECK(dev); } /* // void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray()) */ PERF_TEST_P( Size_MatType, meanStdDev_mask, TYPICAL_MATS ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); Mat src(sz, matType); Mat mask = Mat::ones(sz, CV_8U); Mat mean, dev; declare.in(src, WARMUP_RNG).in(mask); TEST_CYCLE(100) { meanStdDev(src, mean, dev, mask); } SANITY_CHECK(mean); SANITY_CHECK(dev); } /* // int countNonZero(InputArray mtx) */ PERF_TEST_P( Size_MatType, countNonZero, TYPICAL_MATS_C1 ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); Mat src(sz, matType); int cnt = 0; declare.in(src, WARMUP_RNG); TEST_CYCLE(100) { cnt = countNonZero(src); } SANITY_CHECK(cnt); } /* // void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray()) */ PERF_TEST_P( Size_MatType, minMaxLoc, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( CV_8UC1, CV_8SC1, CV_16UC1, CV_16SC1, CV_32SC1, CV_32FC1, CV_64FC1 ) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); Mat src(sz, matType); double minVal, maxVal; Point minLoc, maxLoc; // avoid early exit on 1 byte data if (matType == CV_8U) randu(src, 1, 254); else if (matType == CV_8S) randu(src, -127, 126); else warmup(src, WARMUP_RNG); declare.in(src); TEST_CYCLE(100) { minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc); } SANITY_CHECK(minVal); SANITY_CHECK(maxVal); } CV_ENUM(ROp, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) typedef std::tr1::tuple Size_MatType_ROp_t; typedef perf::TestBaseWithParam Size_MatType_ROp; /* // void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype=-1) */ PERF_TEST_P( Size_MatType_ROp, reduceR, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::ValuesIn(ROp::all()) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int reduceOp = std::tr1::get<2>(GetParam()); int ddepth = -1; if( CV_MAT_DEPTH(matType)< CV_32S && (reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG) ) ddepth = CV_32S; Mat src(sz, matType); Mat vec; declare.in(src, WARMUP_RNG); TEST_CYCLE(100) { reduce(src, vec, 0, reduceOp, ddepth); } SANITY_CHECK(vec); } /* // void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype=-1) */ PERF_TEST_P( Size_MatType_ROp, reduceC, testing::Combine( testing::Values( TYPICAL_MAT_SIZES ), testing::Values( TYPICAL_MAT_TYPES ), testing::ValuesIn(ROp::all()) ) ) { Size sz = std::tr1::get<0>(GetParam()); int matType = std::tr1::get<1>(GetParam()); int reduceOp = std::tr1::get<2>(GetParam()); int ddepth = -1; if( CV_MAT_DEPTH(matType)< CV_32S && (reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG) ) ddepth = CV_32S; Mat src(sz, matType); Mat vec; declare.in(src, WARMUP_RNG); TEST_CYCLE(100) { reduce(src, vec, 1, reduceOp, ddepth); } SANITY_CHECK(vec); }