''' Robust line fitting. ================== Example of using cv2.fitLine function for fitting line to points in presence of outliers. Usage ----- fitline.py Switch through different M-estimator functions and see, how well the robust functions fit the line even in case of ~50% of outliers. Keys ---- SPACE - generaty random points f - change distance function ESC - exit ''' import numpy as np import cv2 import itertools as it from common import draw_str w, h = 512, 256 def toint(p): return tuple(map(int, p)) def sample_line(p1, p2, n, noise=0.0): p1 = np.float32(p1) t = np.random.rand(n,1) return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise dist_func_names = it.cycle('CV_DIST_L2 CV_DIST_L1 CV_DIST_L12 CV_DIST_FAIR CV_DIST_WELSCH CV_DIST_HUBER'.split()) cur_func_name = dist_func_names.next() def update(_=None): noise = cv2.getTrackbarPos('noise', 'fit line') n = cv2.getTrackbarPos('point n', 'fit line') r = cv2.getTrackbarPos('outlier %', 'fit line') / 100.0 outn = int(n*r) p0, p1 = (90, 80), (w-90, h-80) img = np.zeros((h, w, 3), np.uint8) cv2.line(img, toint(p0), toint(p1), (0, 255, 0)) if n > 0: line_points = sample_line(p0, p1, n-outn, noise) outliers = np.random.rand(outn, 2) * (w, h) points = np.vstack([line_points, outliers]) for p in line_points: cv2.circle(img, toint(p), 2, (255, 255, 255), -1) for p in outliers: cv2.circle(img, toint(p), 2, (64, 64, 255), -1) func = getattr(cv2.cv, cur_func_name) vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01) cv2.line(img, (int(cx-vx*w), int(cy-vy*w)), (int(cx+vx*w), int(cy+vy*w)), (0, 0, 255)) draw_str(img, (20, 20), cur_func_name) cv2.imshow('fit line', img) if __name__ == '__main__': print __doc__ cv2.namedWindow('fit line') cv2.createTrackbar('noise', 'fit line', 3, 50, update) cv2.createTrackbar('point n', 'fit line', 100, 500, update) cv2.createTrackbar('outlier %', 'fit line', 30, 100, update) while True: update() ch = cv2.waitKey(0) if ch == ord('f'): cur_func_name = dist_func_names.next() if ch == 27: break