//*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/contrib/hybridtracker.hpp" using namespace cv; CvHybridTrackerParams::CvHybridTrackerParams(float _ft_tracker_weight, float _ms_tracker_weight, CvFeatureTrackerParams _ft_params, CvMeanShiftTrackerParams _ms_params, CvMotionModel) { ft_tracker_weight = _ft_tracker_weight; ms_tracker_weight = _ms_tracker_weight; ft_params = _ft_params; ms_params = _ms_params; } CvMeanShiftTrackerParams::CvMeanShiftTrackerParams(int _tracking_type, CvTermCriteria _term_crit) { tracking_type = _tracking_type; term_crit = _term_crit; } CvHybridTracker::CvHybridTracker() { } CvHybridTracker::CvHybridTracker(HybridTrackerParams _params) : params(_params) { params.ft_params.feature_type = CvFeatureTrackerParams::SIFT; mstracker = new CvMeanShiftTracker(params.ms_params); fttracker = new CvFeatureTracker(params.ft_params); } CvHybridTracker::~CvHybridTracker() { if (mstracker != NULL) delete mstracker; if (fttracker != NULL) delete fttracker; } inline float CvHybridTracker::getL2Norm(Point2f p1, Point2f p2) { float distance = (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y); return std::sqrt(distance); } Mat CvHybridTracker::getDistanceProjection(Mat image, Point2f center) { Mat hist(image.size(), CV_64F); double lu = getL2Norm(Point(0, 0), center); double ru = getL2Norm(Point(0, image.size().width), center); double rd = getL2Norm(Point(image.size().height, image.size().width), center); double ld = getL2Norm(Point(image.size().height, 0), center); double max = (lu < ru) ? lu : ru; max = (max < rd) ? max : rd; max = (max < ld) ? max : ld; for (int i = 0; i < hist.rows; i++) for (int j = 0; j < hist.cols; j++) hist.at (i, j) = 1.0 - (getL2Norm(Point(i, j), center) / max); return hist; } Mat CvHybridTracker::getGaussianProjection(Mat image, int ksize, double sigma, Point2f center) { Mat kernel = getGaussianKernel(ksize, sigma, CV_64F); double max = kernel.at (ksize / 2); Mat hist(image.size(), CV_64F); for (int i = 0; i < hist.rows; i++) for (int j = 0; j < hist.cols; j++) { int pos = cvRound(getL2Norm(Point(i, j), center)); if (pos < ksize / 2.0) hist.at (i, j) = 1.0 - (kernel.at (pos) / max); } return hist; } void CvHybridTracker::newTracker(Mat image, Rect selection) { prev_proj = Mat::zeros(image.size(), CV_64FC1); prev_center = Point2f(selection.x + selection.width / 2.0f, selection.y + selection.height / 2.0f); prev_window = selection; mstracker->newTrackingWindow(image, selection); fttracker->newTrackingWindow(image, selection); samples = cvCreateMat(2, 1, CV_32FC1); labels = cvCreateMat(2, 1, CV_32SC1); ittr = 0; } void CvHybridTracker::updateTracker(Mat image) { ittr++; //copy over clean images: TODO mstracker->updateTrackingWindow(image); fttracker->updateTrackingWindowWithFlow(image); if (params.motion_model == CvMotionModel::EM) updateTrackerWithEM(image); else updateTrackerWithLowPassFilter(image); // Regression to find new weights Point2f ms_center = mstracker->getTrackingEllipse().center; Point2f ft_center = fttracker->getTrackingCenter(); #ifdef DEBUG_HYTRACKER circle(image, ms_center, 3, Scalar(0, 0, 255), -1, 8); circle(image, ft_center, 3, Scalar(255, 0, 0), -1, 8); putText(image, "ms", Point(ms_center.x+2, ms_center.y), FONT_HERSHEY_PLAIN, 0.75, Scalar(255, 255, 255)); putText(image, "ft", Point(ft_center.x+2, ft_center.y), FONT_HERSHEY_PLAIN, 0.75, Scalar(255, 255, 255)); #endif double ms_len = getL2Norm(ms_center, curr_center); double ft_len = getL2Norm(ft_center, curr_center); double total_len = ms_len + ft_len; params.ms_tracker_weight *= (ittr - 1); params.ms_tracker_weight += (float)((ms_len / total_len)); params.ms_tracker_weight /= ittr; params.ft_tracker_weight *= (ittr - 1); params.ft_tracker_weight += (float)((ft_len / total_len)); params.ft_tracker_weight /= ittr; circle(image, prev_center, 3, Scalar(0, 0, 0), -1, 8); circle(image, curr_center, 3, Scalar(255, 255, 255), -1, 8); prev_center = curr_center; prev_window.x = (int)(curr_center.x-prev_window.width/2.0); prev_window.y = (int)(curr_center.y-prev_window.height/2.0); mstracker->setTrackingWindow(prev_window); fttracker->setTrackingWindow(prev_window); } void CvHybridTracker::updateTrackerWithEM(Mat image) { Mat ms_backproj = mstracker->getHistogramProjection(CV_64F); Mat ms_distproj = getDistanceProjection(image, mstracker->getTrackingCenter()); Mat ms_proj = ms_backproj.mul(ms_distproj); float dist_err = getL2Norm(mstracker->getTrackingCenter(), fttracker->getTrackingCenter()); Mat ft_gaussproj = getGaussianProjection(image, cvRound(dist_err), -1, fttracker->getTrackingCenter()); Mat ft_distproj = getDistanceProjection(image, fttracker->getTrackingCenter()); Mat ft_proj = ft_gaussproj.mul(ft_distproj); Mat proj = params.ms_tracker_weight * ms_proj + params.ft_tracker_weight * ft_proj + prev_proj; int sample_count = countNonZero(proj); cvReleaseMat(&samples); cvReleaseMat(&labels); samples = cvCreateMat(sample_count, 2, CV_32FC1); labels = cvCreateMat(sample_count, 1, CV_32SC1); int count = 0; for (int i = 0; i < proj.rows; i++) for (int j = 0; j < proj.cols; j++) if (proj.at (i, j) > 0) { samples->data.fl[count * 2] = (float)i; samples->data.fl[count * 2 + 1] = (float)j; count++; } cv::Mat lbls; EM em_model(1, EM::COV_MAT_SPHERICAL, TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10000, 0.001)); em_model.train(cvarrToMat(samples), noArray(), lbls); if(labels) lbls.copyTo(cvarrToMat(labels)); Mat em_means = em_model.get("means"); curr_center.x = (float)em_means.at(0, 0); curr_center.y = (float)em_means.at(0, 1); } void CvHybridTracker::updateTrackerWithLowPassFilter(Mat) { RotatedRect ms_track = mstracker->getTrackingEllipse(); Point2f ft_center = fttracker->getTrackingCenter(); float a = params.low_pass_gain; curr_center.x = (1 - a) * prev_center.x + a * (params.ms_tracker_weight * ms_track.center.x + params.ft_tracker_weight * ft_center.x); curr_center.y = (1 - a) * prev_center.y + a * (params.ms_tracker_weight * ms_track.center.y + params.ft_tracker_weight * ft_center.y); } Rect CvHybridTracker::getTrackingWindow() { return prev_window; }