// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Note: all tests here are DISABLED by default due specific requirements. // Don't use #if 0 - these tests should be tested for compilation at least. // // Usage: opencv_test_videoio --gtest_also_run_disabled_tests --gtest_filter=*videoio_camera** #include "test_precomp.hpp" #include namespace opencv_test { namespace { static void test_readFrames(/*const*/ VideoCapture& capture, const int N = 100, Mat* lastFrame = NULL, bool testTimestamps = true) { Mat frame; int64 time0 = cv::getTickCount(); int64 sysTimePrev = time0; const double cvTickFreq = cv::getTickFrequency(); double camTimePrev = 0.0; const double fps = capture.get(cv::CAP_PROP_FPS); const double framePeriod = fps == 0.0 ? 1. : 1.0 / fps; const bool validTickAndFps = cvTickFreq != 0 && fps != 0.; testTimestamps &= validTickAndFps; for (int i = 0; i < N; i++) { SCOPED_TRACE(cv::format("frame=%d", i)); capture >> frame; const int64 sysTimeCurr = cv::getTickCount(); const double camTimeCurr = capture.get(cv::CAP_PROP_POS_MSEC); ASSERT_FALSE(frame.empty()); // Do we have a previous frame? if (i > 0 && testTimestamps) { const double sysTimeElapsedSecs = (sysTimeCurr - sysTimePrev) / cvTickFreq; const double camTimeElapsedSecs = (camTimeCurr - camTimePrev) / 1000.; // Check that the time between two camera frames and two system time calls // are within 1.5 frame periods of one another. // // 1.5x is chosen to accomodate for a dropped frame, and an additional 50% // to account for drift in the scale of the camera and system time domains. EXPECT_NEAR(sysTimeElapsedSecs, camTimeElapsedSecs, framePeriod * 1.5); } EXPECT_GT(cvtest::norm(frame, NORM_INF), 0) << "Complete black image has been received"; sysTimePrev = sysTimeCurr; camTimePrev = camTimeCurr; } int64 time1 = cv::getTickCount(); printf("Processed %d frames on %.2f FPS\n", N, (N * cvTickFreq) / (time1 - time0 + 1)); if (lastFrame) *lastFrame = frame.clone(); } TEST(DISABLED_videoio_camera, basic) { VideoCapture capture(0); ASSERT_TRUE(capture.isOpened()); std::cout << "Camera 0 via " << capture.getBackendName() << " backend" << std::endl; std::cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << std::endl; std::cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << std::endl; std::cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << std::endl; test_readFrames(capture); capture.release(); } TEST(DISABLED_videoio_camera, v4l_read_mjpg) { VideoCapture capture(CAP_V4L2); ASSERT_TRUE(capture.isOpened()); ASSERT_TRUE(capture.set(CAP_PROP_FOURCC, VideoWriter::fourcc('M', 'J', 'P', 'G'))); std::cout << "Camera 0 via " << capture.getBackendName() << " backend" << std::endl; std::cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << std::endl; std::cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << std::endl; std::cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << std::endl; int fourcc = (int)capture.get(CAP_PROP_FOURCC); std::cout << "FOURCC code: " << cv::format("0x%8x", fourcc) << std::endl; test_readFrames(capture); capture.release(); } //Following test if for capture device using PhysConn_Video_SerialDigital as crossbar input pin TEST(DISABLED_videoio_camera, channel6) { VideoCapture capture(0); ASSERT_TRUE(capture.isOpened()); capture.set(CAP_PROP_CHANNEL, 6); std::cout << "Camera 0 via " << capture.getBackendName() << " backend" << std::endl; std::cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << std::endl; std::cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << std::endl; std::cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << std::endl; test_readFrames(capture); capture.release(); } TEST(DISABLED_videoio_camera, v4l_read_framesize) { VideoCapture capture(CAP_V4L2); ASSERT_TRUE(capture.isOpened()); std::cout << "Camera 0 via " << capture.getBackendName() << " backend" << std::endl; std::cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << std::endl; std::cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << std::endl; std::cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << std::endl; int fourcc = (int)capture.get(CAP_PROP_FOURCC); std::cout << "FOURCC code: " << cv::format("0x%8x", fourcc) << std::endl; test_readFrames(capture, 30); EXPECT_TRUE(capture.set(CAP_PROP_FRAME_WIDTH, 640)); EXPECT_TRUE(capture.set(CAP_PROP_FRAME_HEIGHT, 480)); std::cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << std::endl; std::cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << std::endl; std::cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << std::endl; Mat frame640x480; test_readFrames(capture, 30, &frame640x480); EXPECT_EQ(640, frame640x480.cols); EXPECT_EQ(480, frame640x480.rows); EXPECT_TRUE(capture.set(CAP_PROP_FRAME_WIDTH, 1280)); EXPECT_TRUE(capture.set(CAP_PROP_FRAME_HEIGHT, 720)); std::cout << "Frame width: " << capture.get(CAP_PROP_FRAME_WIDTH) << std::endl; std::cout << " height: " << capture.get(CAP_PROP_FRAME_HEIGHT) << std::endl; std::cout << "Capturing FPS: " << capture.get(CAP_PROP_FPS) << std::endl; Mat frame1280x720; test_readFrames(capture, 30, &frame1280x720); EXPECT_EQ(1280, frame1280x720.cols); EXPECT_EQ(720, frame1280x720.rows); capture.release(); } static utils::Paths getTestCameras() { static utils::Paths cameras = utils::getConfigurationParameterPaths("OPENCV_TEST_CAMERA_LIST"); return cameras; } TEST(DISABLED_videoio_camera, waitAny_V4L) { auto cameraNames = getTestCameras(); if (cameraNames.empty()) throw SkipTestException("No list of tested cameras. Use OPENCV_TEST_CAMERA_LIST parameter"); const int totalFrames = 50; // number of expected frames (summary for all cameras) const int64 timeoutNS = 100 * 1000000; const Size frameSize(640, 480); const int fpsDefaultEven = 30; const int fpsDefaultOdd = 15; std::vector cameras; for (size_t i = 0; i < cameraNames.size(); ++i) { const auto& name = cameraNames[i]; int fps = (int)utils::getConfigurationParameterSizeT(cv::format("OPENCV_TEST_CAMERA%d_FPS", (int)i).c_str(), (i & 1) ? fpsDefaultOdd : fpsDefaultEven); std::cout << "Camera[" << i << "] = '" << name << "', fps=" << fps << std::endl; VideoCapture cap(name, CAP_V4L); ASSERT_TRUE(cap.isOpened()) << name; EXPECT_TRUE(cap.set(CAP_PROP_FRAME_WIDTH, frameSize.width)) << name; EXPECT_TRUE(cap.set(CAP_PROP_FRAME_HEIGHT, frameSize.height)) << name; EXPECT_TRUE(cap.set(CAP_PROP_FPS, fps)) << name; //launch cameras Mat firstFrame; EXPECT_TRUE(cap.read(firstFrame)); EXPECT_EQ(frameSize.width, firstFrame.cols); EXPECT_EQ(frameSize.height, firstFrame.rows); cameras.push_back(cap); } std::vector frameFromCamera(cameraNames.size(), 0); { int counter = 0; std::vector cameraReady; do { EXPECT_TRUE(VideoCapture::waitAny(cameras, cameraReady, timeoutNS)); EXPECT_FALSE(cameraReady.empty()); for (int idx : cameraReady) { //std::cout << "Reading frame from camera: " << idx << std::endl; ASSERT_TRUE(idx >= 0 && (size_t)idx < cameras.size()) << idx; VideoCapture& c = cameras[idx]; Mat frame; #if 1 ASSERT_TRUE(c.retrieve(frame)) << idx; #else ASSERT_TRUE(c.read(frame)) << idx; #endif EXPECT_EQ(frameSize.width, frame.cols) << idx; EXPECT_EQ(frameSize.height, frame.rows) << idx; ++frameFromCamera[idx]; ++counter; } } while(counter < totalFrames); } for (size_t i = 0; i < cameraNames.size(); ++i) { EXPECT_GT(frameFromCamera[i], (size_t)0) << i; } } }} // namespace