// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2016, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. /* Test for Tensorflow models loading */ #include "test_precomp.hpp" #include "npy_blob.hpp" namespace cvtest { using namespace cv; using namespace cv::dnn; template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_TensorFlow, read_inception) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); Ptr importer = createTensorflowImporter(model); ASSERT_TRUE(importer != NULL); importer->populateNet(net); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); Mat input; resize(sample, input, Size(224, 224)); input -= 128; // mean sub Mat inputBlob = blobFromImage(input); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); std::cout << out.dims << std::endl; } TEST(Test_TensorFlow, inception_accuracy) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); Ptr importer = createTensorflowImporter(model); ASSERT_TRUE(importer != NULL); importer->populateNet(net); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); resize(sample, sample, Size(224, 224)); Mat inputBlob = blobFromImage(sample); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); normAssert(ref, out); } static std::string path(const std::string& file) { return findDataFile("dnn/tensorflow/" + file, false); } static void runTensorFlowNet(const std::string& prefix, double l1 = 1e-5, double lInf = 1e-4) { std::string netPath = path(prefix + "_net.pb"); std::string inpPath = path(prefix + "_in.npy"); std::string outPath = path(prefix + "_out.npy"); Net net = readNetFromTensorflow(netPath); cv::Mat input = blobFromNPY(inpPath); cv::Mat target = blobFromNPY(outPath); net.setInput(input); cv::Mat output = net.forward(); normAssert(target, output, "", l1, lInf); } TEST(Test_TensorFlow, single_conv) { runTensorFlowNet("single_conv"); } TEST(Test_TensorFlow, padding) { runTensorFlowNet("padding_same"); runTensorFlowNet("padding_valid"); } TEST(Test_TensorFlow, eltwise_add_mul) { runTensorFlowNet("eltwise_add_mul"); } TEST(Test_TensorFlow, pad_and_concat) { runTensorFlowNet("pad_and_concat"); } TEST(Test_TensorFlow, fused_batch_norm) { runTensorFlowNet("fused_batch_norm"); } TEST(Test_TensorFlow, pooling) { runTensorFlowNet("max_pool_even"); runTensorFlowNet("max_pool_odd_valid"); runTensorFlowNet("max_pool_odd_same"); } TEST(Test_TensorFlow, deconvolution) { runTensorFlowNet("deconvolution"); } TEST(Test_TensorFlow, fp16) { const float l1 = 1e-3; const float lInf = 1e-2; runTensorFlowNet("fp16_single_conv", l1, lInf); runTensorFlowNet("fp16_deconvolution", l1, lInf); runTensorFlowNet("fp16_max_pool_odd_same", l1, lInf); runTensorFlowNet("fp16_padding_valid", l1, lInf); runTensorFlowNet("fp16_eltwise_add_mul", l1, lInf); runTensorFlowNet("fp16_max_pool_odd_valid", l1, lInf); runTensorFlowNet("fp16_pad_and_concat", l1, lInf); runTensorFlowNet("fp16_max_pool_even", l1, lInf); runTensorFlowNet("fp16_padding_same", l1, lInf); } }