import sys import cv2 import numpy as np # Global Variables DELAY_CAPTION = 1500 DELAY_BLUR = 100 MAX_KERNEL_LENGTH = 31 src = None dst = None window_name = 'Smoothing Demo' def main(argv): cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE) # Load the source image imageName = argv[0] if len(argv) > 0 else "../data/lena.jpg" global src src = cv2.imread(imageName, 1) if src is None: print ('Error opening image') print ('Usage: smoothing.py [image_name -- default ../data/lena.jpg] \n') return -1 if display_caption('Original Image') != 0: return 0 global dst dst = np.copy(src) if display_dst(DELAY_CAPTION) != 0: return 0 # Applying Homogeneous blur if display_caption('Homogeneous Blur') != 0: return 0 ## [blur] for i in range(1, MAX_KERNEL_LENGTH, 2): dst = cv2.blur(src, (i, i)) if display_dst(DELAY_BLUR) != 0: return 0 ## [blur] # Applying Gaussian blur if display_caption('Gaussian Blur') != 0: return 0 ## [gaussianblur] for i in range(1, MAX_KERNEL_LENGTH, 2): dst = cv2.GaussianBlur(src, (i, i), 0) if display_dst(DELAY_BLUR) != 0: return 0 ## [gaussianblur] # Applying Median blur if display_caption('Median Blur') != 0: return 0 ## [medianblur] for i in range(1, MAX_KERNEL_LENGTH, 2): dst = cv2.medianBlur(src, i) if display_dst(DELAY_BLUR) != 0: return 0 ## [medianblur] # Applying Bilateral Filter if display_caption('Bilateral Blur') != 0: return 0 ## [bilateralfilter] # Remember, bilateral is a bit slow, so as value go higher, it takes long time for i in range(1, MAX_KERNEL_LENGTH, 2): dst = cv2.bilateralFilter(src, i, i * 2, i / 2) if display_dst(DELAY_BLUR) != 0: return 0 ## [bilateralfilter] # Done display_caption('Done!') return 0 def display_caption(caption): global dst dst = np.zeros(src.shape, src.dtype) rows, cols, ch = src.shape cv2.putText(dst, caption, (int(cols / 4), int(rows / 2)), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255)) return display_dst(DELAY_CAPTION) def display_dst(delay): cv2.imshow(window_name, dst) c = cv2.waitKey(delay) if c >= 0 : return -1 return 0 if __name__ == "__main__": main(sys.argv[1:])