/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/photo.hpp" #include "opencv2/imgproc.hpp" #include "hdr_common.hpp" namespace cv { class AlignMTBImpl CV_FINAL : public AlignMTB { public: AlignMTBImpl(int _max_bits, int _exclude_range, bool _cut) : name("AlignMTB"), max_bits(_max_bits), exclude_range(_exclude_range), cut(_cut) { } void process(InputArrayOfArrays src, std::vector& dst, InputArray, InputArray) CV_OVERRIDE { CV_INSTRUMENT_REGION(); process(src, dst); } void process(InputArrayOfArrays _src, std::vector& dst) CV_OVERRIDE { CV_INSTRUMENT_REGION(); std::vector src; _src.getMatVector(src); checkImageDimensions(src); dst.resize(src.size()); size_t pivot = src.size() / 2; dst[pivot] = src[pivot]; Mat gray_base; cvtColor(src[pivot], gray_base, COLOR_RGB2GRAY); std::vector shifts; for(size_t i = 0; i < src.size(); i++) { if(i == pivot) { shifts.push_back(Point(0, 0)); continue; } Mat gray; cvtColor(src[i], gray, COLOR_RGB2GRAY); Point shift = calculateShift(gray_base, gray); shifts.push_back(shift); shiftMat(src[i], dst[i], shift); } if(cut) { Point max(0, 0), min(0, 0); for(size_t i = 0; i < shifts.size(); i++) { if(shifts[i].x > max.x) { max.x = shifts[i].x; } if(shifts[i].y > max.y) { max.y = shifts[i].y; } if(shifts[i].x < min.x) { min.x = shifts[i].x; } if(shifts[i].y < min.y) { min.y = shifts[i].y; } } Point size = dst[0].size(); for(size_t i = 0; i < dst.size(); i++) { dst[i] = dst[i](Rect(max, min + size)); } } } Point calculateShift(InputArray _img0, InputArray _img1) CV_OVERRIDE { CV_INSTRUMENT_REGION(); Mat img0 = _img0.getMat(); Mat img1 = _img1.getMat(); CV_Assert(img0.channels() == 1 && img0.type() == img1.type()); CV_Assert(img0.size() == img1.size()); int maxlevel = static_cast(log((double)max(img0.rows, img0.cols)) / log(2.0)) - 1; maxlevel = min(maxlevel, max_bits - 1); std::vector pyr0; std::vector pyr1; buildPyr(img0, pyr0, maxlevel); buildPyr(img1, pyr1, maxlevel); Point shift(0, 0); for(int level = maxlevel; level >= 0; level--) { shift *= 2; Mat tb1, tb2, eb1, eb2; computeBitmaps(pyr0[level], tb1, eb1); computeBitmaps(pyr1[level], tb2, eb2); int min_err = (int)pyr0[level].total(); Point new_shift(shift); for(int i = -1; i <= 1; i++) { for(int j = -1; j <= 1; j++) { Point test_shift = shift + Point(i, j); Mat shifted_tb2, shifted_eb2, diff; shiftMat(tb2, shifted_tb2, test_shift); shiftMat(eb2, shifted_eb2, test_shift); bitwise_xor(tb1, shifted_tb2, diff); bitwise_and(diff, eb1, diff); bitwise_and(diff, shifted_eb2, diff); int err = countNonZero(diff); if(err < min_err) { new_shift = test_shift; min_err = err; } } } shift = new_shift; } return shift; } void shiftMat(InputArray _src, OutputArray _dst, const Point shift) CV_OVERRIDE { CV_INSTRUMENT_REGION(); Mat src = _src.getMat(); _dst.create(src.size(), src.type()); Mat dst = _dst.getMat(); Mat res = Mat::zeros(src.size(), src.type()); int width = src.cols - abs(shift.x); int height = src.rows - abs(shift.y); Rect dst_rect(max(shift.x, 0), max(shift.y, 0), width, height); Rect src_rect(max(-shift.x, 0), max(-shift.y, 0), width, height); src(src_rect).copyTo(res(dst_rect)); res.copyTo(dst); } int getMaxBits() const CV_OVERRIDE { return max_bits; } void setMaxBits(int val) CV_OVERRIDE { max_bits = val; } int getExcludeRange() const CV_OVERRIDE { return exclude_range; } void setExcludeRange(int val) CV_OVERRIDE { exclude_range = val; } bool getCut() const CV_OVERRIDE { return cut; } void setCut(bool val) CV_OVERRIDE { cut = val; } void write(FileStorage& fs) const CV_OVERRIDE { writeFormat(fs); fs << "name" << name << "max_bits" << max_bits << "exclude_range" << exclude_range << "cut" << static_cast(cut); } void read(const FileNode& fn) CV_OVERRIDE { FileNode n = fn["name"]; CV_Assert(n.isString() && String(n) == name); max_bits = fn["max_bits"]; exclude_range = fn["exclude_range"]; int cut_val = fn["cut"]; cut = (cut_val != 0); } void computeBitmaps(InputArray _img, OutputArray _tb, OutputArray _eb) CV_OVERRIDE { CV_INSTRUMENT_REGION(); Mat img = _img.getMat(); _tb.create(img.size(), CV_8U); _eb.create(img.size(), CV_8U); Mat tb = _tb.getMat(), eb = _eb.getMat(); int median = getMedian(img); compare(img, median, tb, CMP_GT); compare(abs(img - median), exclude_range, eb, CMP_GT); } protected: String name; int max_bits, exclude_range; bool cut; void downsample(Mat& src, Mat& dst) { dst = Mat(src.rows / 2, src.cols / 2, CV_8UC1); int offset = src.cols * 2; uchar *src_ptr = src.ptr(); uchar *dst_ptr = dst.ptr(); for(int y = 0; y < dst.rows; y ++) { uchar *ptr = src_ptr; for(int x = 0; x < dst.cols; x++) { dst_ptr[0] = ptr[0]; dst_ptr++; ptr += 2; } src_ptr += offset; } } void buildPyr(Mat& img, std::vector& pyr, int maxlevel) { pyr.resize(maxlevel + 1); pyr[0] = img.clone(); for(int level = 0; level < maxlevel; level++) { downsample(pyr[level], pyr[level + 1]); } } int getMedian(Mat& img) { int channels = 0; Mat hist; int hist_size = LDR_SIZE; float range[] = {0, LDR_SIZE} ; const float* ranges[] = {range}; calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges); float *ptr = hist.ptr(); int median = 0, sum = 0; int thresh = (int)img.total() / 2; while(sum < thresh && median < LDR_SIZE) { sum += static_cast(ptr[median]); median++; } return median; } }; Ptr createAlignMTB(int max_bits, int exclude_range, bool cut) { return makePtr(max_bits, exclude_range, cut); } }