/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { const string FEATURES2D_DIR = "features2d"; const string IMAGE_FILENAME = "tsukuba.png"; const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; /****************************************************************************************\ * Regression tests for descriptor extractors. * \****************************************************************************************/ static void writeMatInBin( const Mat& mat, const string& filename ) { FILE* f = fopen( filename.c_str(), "wb"); if( f ) { CV_Assert(4 == sizeof(int)); int type = mat.type(); fwrite( (void*)&mat.rows, sizeof(int), 1, f ); fwrite( (void*)&mat.cols, sizeof(int), 1, f ); fwrite( (void*)&type, sizeof(int), 1, f ); int dataSize = (int)(mat.step * mat.rows); fwrite( (void*)&dataSize, sizeof(int), 1, f ); fwrite( (void*)mat.ptr(), 1, dataSize, f ); fclose(f); } } static Mat readMatFromBin( const string& filename ) { FILE* f = fopen( filename.c_str(), "rb" ); if( f ) { CV_Assert(4 == sizeof(int)); int rows, cols, type, dataSize; size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); int step = dataSize / rows / CV_ELEM_SIZE(type); CV_Assert(step >= cols); Mat returnMat = Mat(rows, step, type).colRange(0, cols); size_t elements_read = fread( returnMat.ptr(), 1, dataSize, f ); CV_Assert(elements_read == (size_t)(dataSize)); fclose(f); return returnMat; } return Mat(); } template class CV_DescriptorExtractorTest : public cvtest::BaseTest { public: typedef typename Distance::ValueType ValueType; typedef typename Distance::ResultType DistanceType; CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr& _dextractor, Distance d = Distance(), Ptr _detector = Ptr()): name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {} ~CV_DescriptorExtractorTest() { } protected: virtual void createDescriptorExtractor() {} void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) { if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) { ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } CV_Assert( DataType::type == validDescriptors.type() ); int dimension = validDescriptors.cols; DistanceType curMaxDist = 0; size_t exact_count = 0, failed_count = 0; for( int y = 0; y < validDescriptors.rows; y++ ) { DistanceType dist = distance( validDescriptors.ptr(y), calcDescriptors.ptr(y), dimension ); if (dist == 0) exact_count++; if( dist > curMaxDist ) { if (dist > maxDist) failed_count++; curMaxDist = dist; } #if 0 if (dist > 0) { std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl; std::cout << "valid: " << validDescriptors.row(y) << std::endl; std::cout << " calc: " << calcDescriptors.row(y) << std::endl; } #endif } float exact_percents = (100 * (float)exact_count / validDescriptors.rows); float failed_percents = (100 * (float)failed_count / validDescriptors.rows); std::stringstream ss; ss << "Exact count (dist == 0): " << exact_count << " (" << (int)exact_percents << "%)" << std::endl << "Failed count (dist > " << maxDist << "): " << failed_count << " (" << (int)failed_percents << "%)" << std::endl << "Max distance between valid and computed descriptors (" << validDescriptors.size() << "): " << curMaxDist; EXPECT_LE(failed_percents, 20.0f); std::cout << ss.str() << std::endl; } void emptyDataTest() { CV_Assert( dextractor ); // One image. Mat image; vector keypoints; Mat descriptors; try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } RNG rng; image = cvtest::randomMat(rng, Size(50, 50), CV_8UC3, 0, 255, false); try { dextractor->compute( image, keypoints, descriptors ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Several images. vector images; vector > keypointsCollection; vector descriptorsCollection; try { dextractor->compute( images, keypointsCollection, descriptorsCollection ); } catch(...) { ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } } void regressionTest() { CV_Assert( dextractor ); // Read the test image. string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; Mat img = imread( imgFilename ); if( img.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } const std::string keypoints_filename = string(ts->get_data_path()) + (detector.empty() ? (FEATURES2D_DIR + "/" + std::string("keypoints.xml.gz")) : (DESCRIPTOR_DIR + "/" + name + "_keypoints.xml.gz")); FileStorage fs(keypoints_filename, FileStorage::READ); vector keypoints; EXPECT_TRUE(fs.isOpened()) << "Keypoint testdata is missing. Re-computing and re-writing keypoints testdata..."; if (!fs.isOpened()) { fs.open(keypoints_filename, FileStorage::WRITE); ASSERT_TRUE(fs.isOpened()) << "File for writing keypoints can not be opened."; if (detector.empty()) { Ptr fd = ORB::create(); fd->detect(img, keypoints); } else { detector->detect(img, keypoints); } write(fs, "keypoints", keypoints); fs.release(); } else { read(fs.getFirstTopLevelNode(), keypoints); fs.release(); } if(!detector.empty()) { vector calcKeypoints; detector->detect(img, calcKeypoints); // TODO validate received keypoints int diff = abs((int)calcKeypoints.size() - (int)keypoints.size()); if (diff > 0) { std::cout << "Keypoints difference: " << diff << std::endl; EXPECT_LE(diff, (int)(keypoints.size() * 0.03f)); } } ASSERT_FALSE(keypoints.empty()); { Mat calcDescriptors; double t = (double)getTickCount(); dextractor->compute(img, keypoints, calcDescriptors); t = getTickCount() - t; ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows); if (calcDescriptors.rows != (int)keypoints.size()) { ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } if (calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType()) { ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // TODO read and write descriptor extractor parameters and check them Mat validDescriptors = readDescriptors(); EXPECT_FALSE(validDescriptors.empty()) << "Descriptors testdata is missing. Re-writing descriptors testdata..."; if (!validDescriptors.empty()) { compareDescriptors(validDescriptors, calcDescriptors); } else { ASSERT_TRUE(writeDescriptors(calcDescriptors)) << "Descriptors can not be written."; } } } void run(int) { createDescriptorExtractor(); if( !dextractor ) { ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } virtual Mat readDescriptors() { Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return res; } virtual bool writeDescriptors( Mat& descs ) { writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); return true; } string name; const DistanceType maxDist; Ptr dextractor; Distance distance; Ptr detector; private: CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } }; /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( Features2d_DescriptorExtractor_SIFT, regression ) { CV_DescriptorExtractorTest > test( "descriptor-sift", 1.0f, SIFT::create() ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_BRISK, regression ) { CV_DescriptorExtractorTest test( "descriptor-brisk", (CV_DescriptorExtractorTest::DistanceType)2.f, BRISK::create() ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_ORB, regression ) { // TODO adjust the parameters below CV_DescriptorExtractorTest test( "descriptor-orb", #if CV_NEON (CV_DescriptorExtractorTest::DistanceType)25.f, #else (CV_DescriptorExtractorTest::DistanceType)12.f, #endif ORB::create() ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_KAZE, regression ) { CV_DescriptorExtractorTest< L2 > test( "descriptor-kaze", 0.03f, KAZE::create(), L2(), KAZE::create() ); test.safe_run(); } TEST( Features2d_DescriptorExtractor_AKAZE, regression ) { CV_DescriptorExtractorTest test( "descriptor-akaze", (CV_DescriptorExtractorTest::DistanceType)(486*0.05f), AKAZE::create(), Hamming(), AKAZE::create()); test.safe_run(); } TEST( Features2d_DescriptorExtractor_AKAZE_DESCRIPTOR_KAZE, regression ) { CV_DescriptorExtractorTest< L2 > test( "descriptor-akaze-with-kaze-desc", 0.03f, AKAZE::create(AKAZE::DESCRIPTOR_KAZE), L2(), AKAZE::create(AKAZE::DESCRIPTOR_KAZE)); test.safe_run(); } TEST( Features2d_DescriptorExtractor, batch_ORB ) { string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf"); vector imgs, descriptors; vector > keypoints; int i, n = 6; Ptr orb = ORB::create(); for( i = 0; i < n; i++ ) { string imgname = format("%s/img%d.png", path.c_str(), i+1); Mat img = imread(imgname, 0); imgs.push_back(img); } orb->detect(imgs, keypoints); orb->compute(imgs, keypoints, descriptors); ASSERT_EQ((int)keypoints.size(), n); ASSERT_EQ((int)descriptors.size(), n); for( i = 0; i < n; i++ ) { EXPECT_GT((int)keypoints[i].size(), 100); EXPECT_GT(descriptors[i].rows, 100); } } TEST( Features2d_DescriptorExtractor, batch_SIFT ) { string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf"); vector imgs, descriptors; vector > keypoints; int i, n = 6; Ptr sift = SIFT::create(); for( i = 0; i < n; i++ ) { string imgname = format("%s/img%d.png", path.c_str(), i+1); Mat img = imread(imgname, 0); imgs.push_back(img); } sift->detect(imgs, keypoints); sift->compute(imgs, keypoints, descriptors); ASSERT_EQ((int)keypoints.size(), n); ASSERT_EQ((int)descriptors.size(), n); for( i = 0; i < n; i++ ) { EXPECT_GT((int)keypoints[i].size(), 100); EXPECT_GT(descriptors[i].rows, 100); } } class DescriptorImage : public TestWithParam { protected: virtual void SetUp() { pattern = GetParam(); } std::string pattern; }; TEST_P(DescriptorImage, no_crash) { vector fnames; glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false); sort(fnames.begin(), fnames.end()); Ptr akaze_mldb = AKAZE::create(AKAZE::DESCRIPTOR_MLDB); Ptr akaze_mldb_upright = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT); Ptr akaze_mldb_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 256); Ptr akaze_mldb_upright_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT, 256); Ptr akaze_kaze = AKAZE::create(AKAZE::DESCRIPTOR_KAZE); Ptr akaze_kaze_upright = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT); Ptr orb = ORB::create(); Ptr kaze = KAZE::create(); Ptr brisk = BRISK::create(); size_t n = fnames.size(); vector keypoints; Mat descriptors; orb->setMaxFeatures(5000); for(size_t i = 0; i < n; i++ ) { printf("%d. image: %s:\n", (int)i, fnames[i].c_str()); if( strstr(fnames[i].c_str(), "MP.png") != 0 ) { printf("\tskip\n"); continue; } bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0; Mat img = imread(fnames[i], -1); printf("\t%dx%d\n", img.cols, img.rows); #define TEST_DETECTOR(name, descriptor) \ keypoints.clear(); descriptors.release(); \ printf("\t" name "\n"); fflush(stdout); \ descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \ printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \ if (checkCount) \ { \ EXPECT_GT((int)keypoints.size(), 0); \ } \ ASSERT_EQ(descriptors.rows, (int)keypoints.size()); TEST_DETECTOR("AKAZE:MLDB", akaze_mldb); TEST_DETECTOR("AKAZE:MLDB_UPRIGHT", akaze_mldb_upright); TEST_DETECTOR("AKAZE:MLDB_256", akaze_mldb_256); TEST_DETECTOR("AKAZE:MLDB_UPRIGHT_256", akaze_mldb_upright_256); TEST_DETECTOR("AKAZE:KAZE", akaze_kaze); TEST_DETECTOR("AKAZE:KAZE_UPRIGHT", akaze_kaze_upright); TEST_DETECTOR("KAZE", kaze); TEST_DETECTOR("ORB", orb); TEST_DETECTOR("BRISK", brisk); } } INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage, testing::Values( "shared/lena.png", "shared/box*.png", "shared/fruits*.png", "shared/airplane.png", "shared/graffiti.png", "shared/1_itseez-0001*.png", "shared/pic*.png", "shared/templ.png" ) ); }} // namespace