/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// //----------------------------------------------------------------------------- // // class TiledOutputFile // //----------------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include #include "ImathBox.h" #include #include #include #include #include #include #include "IlmThreadPool.h" #include "IlmThreadSemaphore.h" #include "IlmThreadMutex.h" #include "ImfOutputStreamMutex.h" #include "ImfOutputPartData.h" #include "Iex.h" #include #include #include #include #include #include #include "ImfNamespace.h" OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER using IMATH_NAMESPACE::Box2i; using IMATH_NAMESPACE::V2i; using std::string; using std::vector; using std::ofstream; using std::map; using std::min; using std::max; using std::swap; using ILMTHREAD_NAMESPACE::Mutex; using ILMTHREAD_NAMESPACE::Lock; using ILMTHREAD_NAMESPACE::Semaphore; using ILMTHREAD_NAMESPACE::Task; using ILMTHREAD_NAMESPACE::TaskGroup; using ILMTHREAD_NAMESPACE::ThreadPool; namespace { struct TOutSliceInfo { PixelType type; const char * base; size_t xStride; size_t yStride; bool zero; int xTileCoords; int yTileCoords; TOutSliceInfo (PixelType type = HALF, const char *base = 0, size_t xStride = 0, size_t yStride = 0, bool zero = false, int xTileCoords = 0, int yTileCoords = 0); }; TOutSliceInfo::TOutSliceInfo (PixelType t, const char *b, size_t xs, size_t ys, bool z, int xtc, int ytc) : type (t), base (b), xStride (xs), yStride (ys), zero (z), xTileCoords (xtc), yTileCoords (ytc) { // empty } struct TileCoord { int dx; int dy; int lx; int ly; TileCoord (int xTile = 0, int yTile = 0, int xLevel = 0, int yLevel = 0) : dx (xTile), dy (yTile), lx (xLevel), ly (yLevel) { // empty } bool operator < (const TileCoord &other) const { return (ly < other.ly) || (ly == other.ly && lx < other.lx) || ((ly == other.ly && lx == other.lx) && ((dy < other.dy) || (dy == other.dy && dx < other.dx))); } bool operator == (const TileCoord &other) const { return lx == other.lx && ly == other.ly && dx == other.dx && dy == other.dy; } }; struct BufferedTile { char * pixelData; int pixelDataSize; BufferedTile (const char *data, int size): pixelData (0), pixelDataSize(size) { pixelData = new char[pixelDataSize]; memcpy (pixelData, data, pixelDataSize); } ~BufferedTile() { delete [] pixelData; } }; typedef map TileMap; struct TileBuffer { Array buffer; const char * dataPtr; int dataSize; Compressor * compressor; TileCoord tileCoord; bool hasException; string exception; TileBuffer (Compressor *comp); ~TileBuffer (); inline void wait () {_sem.wait();} inline void post () {_sem.post();} protected: Semaphore _sem; }; TileBuffer::TileBuffer (Compressor *comp): dataPtr (0), dataSize (0), compressor (comp), hasException (false), exception (), _sem (1) { // empty } TileBuffer::~TileBuffer () { delete compressor; } } // namespace struct TiledOutputFile::Data { Header header; // the image header int version; // file format version bool multipart; // part came from a multipart file TileDescription tileDesc; // describes the tile layout FrameBuffer frameBuffer; // framebuffer to write into Int64 previewPosition; LineOrder lineOrder; // the file's lineorder int minX; // data window's min x coord int maxX; // data window's max x coord int minY; // data window's min y coord int maxY; // data window's max x coord int numXLevels; // number of x levels int numYLevels; // number of y levels int * numXTiles; // number of x tiles at a level int * numYTiles; // number of y tiles at a level TileOffsets tileOffsets; // stores offsets in file for // each tile Compressor::Format format; // compressor's data format vector slices; // info about channels in file size_t maxBytesPerTileLine; // combined size of a tile line // over all channels vector tileBuffers; size_t tileBufferSize; // size of a tile buffer Int64 tileOffsetsPosition; // position of the tile index TileMap tileMap; TileCoord nextTileToWrite; int partNumber; // the output part number Data (int numThreads); ~Data (); inline TileBuffer * getTileBuffer (int number); // hash function from tile // buffer coords into our // vector of tile buffers TileCoord nextTileCoord (const TileCoord &a); }; TiledOutputFile::Data::Data (int numThreads): multipart(false), numXTiles(0), numYTiles(0), tileOffsetsPosition (0), partNumber(-1) { // // We need at least one tileBuffer, but if threading is used, // to keep n threads busy we need 2*n tileBuffers // tileBuffers.resize (max (1, 2 * numThreads)); } TiledOutputFile::Data::~Data () { delete [] numXTiles; delete [] numYTiles; // // Delete all the tile buffers, if any still happen to exist // for (TileMap::iterator i = tileMap.begin(); i != tileMap.end(); ++i) delete i->second; for (size_t i = 0; i < tileBuffers.size(); i++) delete tileBuffers[i]; } TileBuffer* TiledOutputFile::Data::getTileBuffer (int number) { return tileBuffers[number % tileBuffers.size()]; } TileCoord TiledOutputFile::Data::nextTileCoord (const TileCoord &a) { TileCoord b = a; if (lineOrder == INCREASING_Y) { b.dx++; if (b.dx >= numXTiles[b.lx]) { b.dx = 0; b.dy++; if (b.dy >= numYTiles[b.ly]) { // // the next tile is in the next level // b.dy = 0; switch (tileDesc.mode) { case ONE_LEVEL: case MIPMAP_LEVELS: b.lx++; b.ly++; break; case RIPMAP_LEVELS: b.lx++; if (b.lx >= numXLevels) { b.lx = 0; b.ly++; #ifdef DEBUG assert (b.ly <= numYLevels); #endif } break; case NUM_LEVELMODES: throw(IEX_NAMESPACE::ArgExc("Invalid tile description")); } } } } else if (lineOrder == DECREASING_Y) { b.dx++; if (b.dx >= numXTiles[b.lx]) { b.dx = 0; b.dy--; if (b.dy < 0) { // // the next tile is in the next level // switch (tileDesc.mode) { case ONE_LEVEL: case MIPMAP_LEVELS: b.lx++; b.ly++; break; case RIPMAP_LEVELS: b.lx++; if (b.lx >= numXLevels) { b.lx = 0; b.ly++; #ifdef DEBUG assert (b.ly <= numYLevels); #endif } break; case NUM_LEVELMODES: throw(IEX_NAMESPACE::ArgExc("Invalid tile description")); } if (b.ly < numYLevels) b.dy = numYTiles[b.ly] - 1; } } } return b; } namespace { void writeTileData (OutputStreamMutex *streamData, TiledOutputFile::Data *ofd, int dx, int dy, int lx, int ly, const char pixelData[], int pixelDataSize) { // // Store a block of pixel data in the output file, and try // to keep track of the current writing position the file, // without calling tellp() (tellp() can be fairly expensive). // Int64 currentPosition = streamData->currentPosition; streamData->currentPosition = 0; if (currentPosition == 0) currentPosition = streamData->os->tellp(); ofd->tileOffsets (dx, dy, lx, ly) = currentPosition; #ifdef DEBUG assert (streamData->os->tellp() == currentPosition); #endif // // Write the tile header. // if (ofd->multipart) { Xdr::write (*streamData->os, ofd->partNumber); } Xdr::write (*streamData->os, dx); Xdr::write (*streamData->os, dy); Xdr::write (*streamData->os, lx); Xdr::write (*streamData->os, ly); Xdr::write (*streamData->os, pixelDataSize); streamData->os->write (pixelData, pixelDataSize); // // Keep current position in the file so that we can avoid // redundant seekg() operations (seekg() can be fairly expensive). // streamData->currentPosition = currentPosition + 5 * Xdr::size() + pixelDataSize; if (ofd->multipart) { streamData->currentPosition += Xdr::size(); } } void bufferedTileWrite (OutputStreamMutex *streamData, TiledOutputFile::Data *ofd, int dx, int dy, int lx, int ly, const char pixelData[], int pixelDataSize) { // // Check if a tile with coordinates (dx,dy,lx,ly) has already been written. // if (ofd->tileOffsets (dx, dy, lx, ly)) { THROW (IEX_NAMESPACE::ArgExc, "Attempt to write tile " "(" << dx << ", " << dy << ", " << lx << ", " << ly << ") " "more than once."); } // // If tiles can be written in random order, then don't buffer anything. // if (ofd->lineOrder == RANDOM_Y) { writeTileData (streamData, ofd, dx, dy, lx, ly, pixelData, pixelDataSize); return; } // // If the tiles cannot be written in random order, then check if a // tile with coordinates (dx,dy,lx,ly) has already been buffered. // TileCoord currentTile = TileCoord(dx, dy, lx, ly); if (ofd->tileMap.find (currentTile) != ofd->tileMap.end()) { THROW (IEX_NAMESPACE::ArgExc, "Attempt to write tile " "(" << dx << ", " << dy << ", " << lx << ", " << ly << ") " "more than once."); } // // If all the tiles before this one have already been written to the file, // then write this tile immediately and check if we have buffered tiles // that can be written after this tile. // // Otherwise, buffer the tile so it can be written to file later. // if (ofd->nextTileToWrite == currentTile) { writeTileData (streamData, ofd, dx, dy, lx, ly, pixelData, pixelDataSize); ofd->nextTileToWrite = ofd->nextTileCoord (ofd->nextTileToWrite); TileMap::iterator i = ofd->tileMap.find (ofd->nextTileToWrite); // // Step through the tiles and write all successive buffered tiles after // the current one. // while(i != ofd->tileMap.end()) { // // Write the tile, and then delete the tile's buffered data // writeTileData (streamData, ofd, i->first.dx, i->first.dy, i->first.lx, i->first.ly, i->second->pixelData, i->second->pixelDataSize); delete i->second; ofd->tileMap.erase (i); // // Proceed to the next tile // ofd->nextTileToWrite = ofd->nextTileCoord (ofd->nextTileToWrite); i = ofd->tileMap.find (ofd->nextTileToWrite); } } else { // // Create a new BufferedTile, copy the pixelData into it, and // insert it into the tileMap. // ofd->tileMap[currentTile] = new BufferedTile ((const char *)pixelData, pixelDataSize); } } void convertToXdr (TiledOutputFile::Data *ofd, Array& tileBuffer, int numScanLines, int numPixelsPerScanLine) { // // Convert the contents of a TiledOutputFile's tileBuffer from the // machine's native representation to Xdr format. This function is called // by writeTile(), below, if the compressor wanted its input pixel data // in the machine's native format, but then failed to compress the data // (most compressors will expand rather than compress random input data). // // Note that this routine assumes that the machine's native representation // of the pixel data has the same size as the Xdr representation. This // makes it possible to convert the pixel data in place, without an // intermediate temporary buffer. // // // Set these to point to the start of the tile. // We will write to toPtr, and read from fromPtr. // char *writePtr = tileBuffer; const char *readPtr = writePtr; // // Iterate over all scan lines in the tile. // for (int y = 0; y < numScanLines; ++y) { // // Iterate over all slices in the file. // for (unsigned int i = 0; i < ofd->slices.size(); ++i) { const TOutSliceInfo &slice = ofd->slices[i]; // // Convert the samples in place. // convertInPlace (writePtr, readPtr, slice.type, numPixelsPerScanLine); } } #ifdef DEBUG assert (writePtr == readPtr); #endif } // // A TileBufferTask encapsulates the task of copying a tile from // the user's framebuffer into a LineBuffer and compressing the data // if necessary. // class TileBufferTask: public Task { public: TileBufferTask (TaskGroup *group, TiledOutputFile::Data *ofd, int number, int dx, int dy, int lx, int ly); virtual ~TileBufferTask (); virtual void execute (); private: TiledOutputFile::Data * _ofd; TileBuffer * _tileBuffer; }; TileBufferTask::TileBufferTask (TaskGroup *group, TiledOutputFile::Data *ofd, int number, int dx, int dy, int lx, int ly) : Task (group), _ofd (ofd), _tileBuffer (_ofd->getTileBuffer (number)) { // // Wait for the tileBuffer to become available // _tileBuffer->wait (); _tileBuffer->tileCoord = TileCoord (dx, dy, lx, ly); } TileBufferTask::~TileBufferTask () { // // Signal that the tile buffer is now free // _tileBuffer->post (); } void TileBufferTask::execute () { try { // // First copy the pixel data from the frame buffer // into the tile buffer // // Convert one tile's worth of pixel data to // a machine-independent representation, and store // the result in _tileBuffer->buffer. // char *writePtr = _tileBuffer->buffer; Box2i tileRange = dataWindowForTile (_ofd->tileDesc, _ofd->minX, _ofd->maxX, _ofd->minY, _ofd->maxY, _tileBuffer->tileCoord.dx, _tileBuffer->tileCoord.dy, _tileBuffer->tileCoord.lx, _tileBuffer->tileCoord.ly); int numScanLines = tileRange.max.y - tileRange.min.y + 1; int numPixelsPerScanLine = tileRange.max.x - tileRange.min.x + 1; // // Iterate over the scan lines in the tile. // for (int y = tileRange.min.y; y <= tileRange.max.y; ++y) { // // Iterate over all image channels. // for (unsigned int i = 0; i < _ofd->slices.size(); ++i) { const TOutSliceInfo &slice = _ofd->slices[i]; // // These offsets are used to facilitate both absolute // and tile-relative pixel coordinates. // int xOffset = slice.xTileCoords * tileRange.min.x; int yOffset = slice.yTileCoords * tileRange.min.y; // // Fill the tile buffer with pixel data. // if (slice.zero) { // // The frame buffer contains no data for this channel. // Store zeroes in _data->tileBuffer. // fillChannelWithZeroes (writePtr, _ofd->format, slice.type, numPixelsPerScanLine); } else { // // The frame buffer contains data for this channel. // const char *readPtr = slice.base + (y - yOffset) * slice.yStride + (tileRange.min.x - xOffset) * slice.xStride; const char *endPtr = readPtr + (numPixelsPerScanLine - 1) * slice.xStride; copyFromFrameBuffer (writePtr, readPtr, endPtr, slice.xStride, _ofd->format, slice.type); } } } // // Compress the contents of the tileBuffer, // and store the compressed data in the output file. // _tileBuffer->dataSize = writePtr - _tileBuffer->buffer; _tileBuffer->dataPtr = _tileBuffer->buffer; if (_tileBuffer->compressor) { const char *compPtr; int compSize = _tileBuffer->compressor->compressTile (_tileBuffer->dataPtr, _tileBuffer->dataSize, tileRange, compPtr); if (compSize < _tileBuffer->dataSize) { _tileBuffer->dataSize = compSize; _tileBuffer->dataPtr = compPtr; } else if (_ofd->format == Compressor::NATIVE) { // // The data did not shrink during compression, but // we cannot write to the file using native format, // so we need to convert the lineBuffer to Xdr. // convertToXdr (_ofd, _tileBuffer->buffer, numScanLines, numPixelsPerScanLine); } } } catch (std::exception &e) { if (!_tileBuffer->hasException) { _tileBuffer->exception = e.what (); _tileBuffer->hasException = true; } } catch (...) { if (!_tileBuffer->hasException) { _tileBuffer->exception = "unrecognized exception"; _tileBuffer->hasException = true; } } } } // namespace TiledOutputFile::TiledOutputFile (const char fileName[], const Header &header, int numThreads) : _data (new Data (numThreads)), _streamData (new OutputStreamMutex()), _deleteStream (true) { try { header.sanityCheck (true); _streamData->os = new StdOFStream (fileName); _data->multipart=false; // since we opened with one header we can't be multipart initialize (header); _streamData->currentPosition = _streamData->os->tellp(); // Write header and empty offset table to the file. writeMagicNumberAndVersionField(*_streamData->os, _data->header); _data->previewPosition = _data->header.writeTo (*_streamData->os, true); _data->tileOffsetsPosition = _data->tileOffsets.writeTo (*_streamData->os); } catch (IEX_NAMESPACE::BaseExc &e) { // ~TiledOutputFile will not run, so free memory here delete _streamData->os; delete _streamData; delete _data; REPLACE_EXC (e, "Cannot open image file " "\"" << fileName << "\". " << e.what()); throw; } catch (...) { // ~TiledOutputFile will not run, so free memory here delete _streamData->os; delete _streamData; delete _data; throw; } } TiledOutputFile::TiledOutputFile (OPENEXR_IMF_INTERNAL_NAMESPACE::OStream &os, const Header &header, int numThreads) : _data (new Data (numThreads)), _streamData (new OutputStreamMutex()), _deleteStream (false) { try { header.sanityCheck(true); _streamData->os = &os; _data->multipart=false; // since we opened with one header we can't be multipart initialize (header); _streamData->currentPosition = _streamData->os->tellp(); // Write header and empty offset table to the file. writeMagicNumberAndVersionField(*_streamData->os, _data->header); _data->previewPosition = _data->header.writeTo (*_streamData->os, true); _data->tileOffsetsPosition = _data->tileOffsets.writeTo (*_streamData->os); } catch (IEX_NAMESPACE::BaseExc &e) { delete _streamData; delete _data; REPLACE_EXC (e, "Cannot open image file " "\"" << os.fileName() << "\". " << e.what()); throw; } catch (...) { delete _streamData; delete _data; throw; } } TiledOutputFile::TiledOutputFile(const OutputPartData* part) : _deleteStream (false) { try { if (part->header.type() != TILEDIMAGE) throw IEX_NAMESPACE::ArgExc("Can't build a TiledOutputFile from a type-mismatched part."); _streamData = part->mutex; _data = new Data(part->numThreads); _data->multipart=part->multipart; initialize(part->header); _data->partNumber = part->partNumber; _data->tileOffsetsPosition = part->chunkOffsetTablePosition; _data->previewPosition = part->previewPosition; } catch (IEX_NAMESPACE::BaseExc &e) { delete _data; REPLACE_EXC (e, "Cannot initialize output part " "\"" << part->partNumber << "\". " << e.what()); throw; } catch (...) { delete _data; throw; } } void TiledOutputFile::initialize (const Header &header) { _data->header = header; _data->lineOrder = _data->header.lineOrder(); // // Check that the file is indeed tiled // _data->tileDesc = _data->header.tileDescription(); // // 'Fix' the type attribute if it exists but is incorrectly set // (attribute is optional, but ensure it is correct if it exists) // if(_data->header.hasType()) { _data->header.setType(TILEDIMAGE); } // // Save the dataWindow information // const Box2i &dataWindow = _data->header.dataWindow(); _data->minX = dataWindow.min.x; _data->maxX = dataWindow.max.x; _data->minY = dataWindow.min.y; _data->maxY = dataWindow.max.y; // // Precompute level and tile information to speed up utility functions // precalculateTileInfo (_data->tileDesc, _data->minX, _data->maxX, _data->minY, _data->maxY, _data->numXTiles, _data->numYTiles, _data->numXLevels, _data->numYLevels); // // Determine the first tile coordinate that we will be writing // if the file is not RANDOM_Y. // _data->nextTileToWrite = (_data->lineOrder == INCREASING_Y)? TileCoord (0, 0, 0, 0): TileCoord (0, _data->numYTiles[0] - 1, 0, 0); _data->maxBytesPerTileLine = calculateBytesPerPixel (_data->header) * _data->tileDesc.xSize; _data->tileBufferSize = _data->maxBytesPerTileLine * _data->tileDesc.ySize; // // Create all the TileBuffers and allocate their internal buffers // for (size_t i = 0; i < _data->tileBuffers.size(); i++) { _data->tileBuffers[i] = new TileBuffer (newTileCompressor (_data->header.compression(), _data->maxBytesPerTileLine, _data->tileDesc.ySize, _data->header)); _data->tileBuffers[i]->buffer.resizeErase(_data->tileBufferSize); } _data->format = defaultFormat (_data->tileBuffers[0]->compressor); _data->tileOffsets = TileOffsets (_data->tileDesc.mode, _data->numXLevels, _data->numYLevels, _data->numXTiles, _data->numYTiles); } TiledOutputFile::~TiledOutputFile () { if (_data) { { Lock lock(*_streamData); Int64 originalPosition = _streamData->os->tellp(); if (_data->tileOffsetsPosition > 0) { try { _streamData->os->seekp (_data->tileOffsetsPosition); _data->tileOffsets.writeTo (*_streamData->os); // // Restore the original position. // _streamData->os->seekp (originalPosition); } catch (...) { // // We cannot safely throw any exceptions from here. // This destructor may have been called because the // stack is currently being unwound for another // exception. // } } } if (_deleteStream && _streamData) delete _streamData->os; if (_data->partNumber == -1) delete _streamData; delete _data; } } const char * TiledOutputFile::fileName () const { return _streamData->os->fileName(); } const Header & TiledOutputFile::header () const { return _data->header; } void TiledOutputFile::setFrameBuffer (const FrameBuffer &frameBuffer) { Lock lock (*_streamData); // // Check if the new frame buffer descriptor // is compatible with the image file header. // const ChannelList &channels = _data->header.channels(); for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i) { FrameBuffer::ConstIterator j = frameBuffer.find (i.name()); if (j == frameBuffer.end()) continue; if (i.channel().type != j.slice().type) THROW (IEX_NAMESPACE::ArgExc, "Pixel type of \"" << i.name() << "\" channel " "of output file \"" << fileName() << "\" is " "not compatible with the frame buffer's " "pixel type."); if (j.slice().xSampling != 1 || j.slice().ySampling != 1) THROW (IEX_NAMESPACE::ArgExc, "All channels in a tiled file must have" "sampling (1,1)."); } // // Initialize slice table for writePixels(). // vector slices; for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i) { FrameBuffer::ConstIterator j = frameBuffer.find (i.name()); if (j == frameBuffer.end()) { // // Channel i is not present in the frame buffer. // In the file, channel i will contain only zeroes. // slices.push_back (TOutSliceInfo (i.channel().type, 0, // base 0, // xStride, 0, // yStride, true)); // zero } else { // // Channel i is present in the frame buffer. // slices.push_back (TOutSliceInfo (j.slice().type, j.slice().base, j.slice().xStride, j.slice().yStride, false, // zero (j.slice().xTileCoords)? 1: 0, (j.slice().yTileCoords)? 1: 0)); } } // // Store the new frame buffer. // _data->frameBuffer = frameBuffer; _data->slices = slices; } const FrameBuffer & TiledOutputFile::frameBuffer () const { Lock lock (*_streamData); return _data->frameBuffer; } void TiledOutputFile::writeTiles (int dx1, int dx2, int dy1, int dy2, int lx, int ly) { try { Lock lock (*_streamData); if (_data->slices.size() == 0) throw IEX_NAMESPACE::ArgExc ("No frame buffer specified " "as pixel data source."); if (!isValidTile (dx1, dy1, lx, ly) || !isValidTile (dx2, dy2, lx, ly)) throw IEX_NAMESPACE::ArgExc ("Tile coordinates are invalid."); if (!isValidLevel (lx, ly)) THROW (IEX_NAMESPACE::ArgExc, "Level coordinate " "(" << lx << ", " << ly << ") " "is invalid."); // // Determine the first and last tile coordinates in both dimensions // based on the file's lineOrder // if (dx1 > dx2) swap (dx1, dx2); if (dy1 > dy2) swap (dy1, dy2); int dyStart = dy1; int dyStop = dy2 + 1; int dY = 1; if (_data->lineOrder == DECREASING_Y) { dyStart = dy2; dyStop = dy1 - 1; dY = -1; } int numTiles = (dx2 - dx1 + 1) * (dy2 - dy1 + 1); int numTasks = min ((int)_data->tileBuffers.size(), numTiles); // // Create a task group for all tile buffer tasks. When the // task group goes out of scope, the destructor waits until // all tasks are complete. // { TaskGroup taskGroup; // // Add in the initial compression tasks to the thread pool // int nextCompBuffer = 0; int dxComp = dx1; int dyComp = dyStart; while (nextCompBuffer < numTasks) { ThreadPool::addGlobalTask (new TileBufferTask (&taskGroup, _data, nextCompBuffer++, dxComp, dyComp, lx, ly)); dxComp++; if (dxComp > dx2) { dxComp = dx1; dyComp += dY; } } // // Write the compressed buffers and add in more compression // tasks until done // int nextWriteBuffer = 0; int dxWrite = dx1; int dyWrite = dyStart; while (nextWriteBuffer < numTiles) { // // Wait until the nextWriteBuffer is ready to be written // TileBuffer* writeBuffer = _data->getTileBuffer (nextWriteBuffer); writeBuffer->wait(); // // Write the tilebuffer // bufferedTileWrite (_streamData, _data, dxWrite, dyWrite, lx, ly, writeBuffer->dataPtr, writeBuffer->dataSize); // // Release the lock on nextWriteBuffer // writeBuffer->post(); // // If there are no more tileBuffers to compress, then // only continue to write out remaining tileBuffers, // otherwise keep adding compression tasks. // if (nextCompBuffer < numTiles) { // // add nextCompBuffer as a compression Task // ThreadPool::addGlobalTask (new TileBufferTask (&taskGroup, _data, nextCompBuffer, dxComp, dyComp, lx, ly)); } nextWriteBuffer++; dxWrite++; if (dxWrite > dx2) { dxWrite = dx1; dyWrite += dY; } nextCompBuffer++; dxComp++; if (dxComp > dx2) { dxComp = dx1; dyComp += dY; } } // // finish all tasks // } // // Exeption handling: // // TileBufferTask::execute() may have encountered exceptions, but // those exceptions occurred in another thread, not in the thread // that is executing this call to TiledOutputFile::writeTiles(). // TileBufferTask::execute() has caught all exceptions and stored // the exceptions' what() strings in the tile buffers. // Now we check if any tile buffer contains a stored exception; if // this is the case then we re-throw the exception in this thread. // (It is possible that multiple tile buffers contain stored // exceptions. We re-throw the first exception we find and // ignore all others.) // const string *exception = 0; for (size_t i = 0; i < _data->tileBuffers.size(); ++i) { TileBuffer *tileBuffer = _data->tileBuffers[i]; if (tileBuffer->hasException && !exception) exception = &tileBuffer->exception; tileBuffer->hasException = false; } if (exception) throw IEX_NAMESPACE::IoExc (*exception); } catch (IEX_NAMESPACE::BaseExc &e) { REPLACE_EXC (e, "Failed to write pixel data to image " "file \"" << fileName() << "\". " << e.what()); throw; } } void TiledOutputFile::writeTiles (int dx1, int dxMax, int dyMin, int dyMax, int l) { writeTiles (dx1, dxMax, dyMin, dyMax, l, l); } void TiledOutputFile::writeTile (int dx, int dy, int lx, int ly) { writeTiles (dx, dx, dy, dy, lx, ly); } void TiledOutputFile::writeTile (int dx, int dy, int l) { writeTile(dx, dy, l, l); } void TiledOutputFile::copyPixels (TiledInputFile &in) { Lock lock (*_streamData); // // Check if this file's and and the InputFile's // headers are compatible. // const Header &hdr = _data->header; const Header &inHdr = in.header(); if (!hdr.hasTileDescription() || !inHdr.hasTileDescription()) THROW (IEX_NAMESPACE::ArgExc, "Cannot perform a quick pixel copy from image " "file \"" << in.fileName() << "\" to image " "file \"" << fileName() << "\". The " "output file is tiled, but the input file is not. " "Try using OutputFile::copyPixels() instead."); if (!(hdr.tileDescription() == inHdr.tileDescription())) THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image " "file \"" << in.fileName() << "\" to image " "file \"" << fileName() << "\" failed. " "The files have different tile descriptions."); if (!(hdr.dataWindow() == inHdr.dataWindow())) THROW (IEX_NAMESPACE::ArgExc, "Cannot copy pixels from image " "file \"" << in.fileName() << "\" to image " "file \"" << fileName() << "\". The " "files have different data windows."); if (!(hdr.lineOrder() == inHdr.lineOrder())) THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image " "file \"" << in.fileName() << "\" to image " "file \"" << fileName() << "\" failed. " "The files have different line orders."); if (!(hdr.compression() == inHdr.compression())) THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image " "file \"" << in.fileName() << "\" to image " "file \"" << fileName() << "\" failed. " "The files use different compression methods."); if (!(hdr.channels() == inHdr.channels())) THROW (IEX_NAMESPACE::ArgExc, "Quick pixel copy from image " "file \"" << in.fileName() << "\" to image " "file \"" << fileName() << "\" " "failed. The files have different channel " "lists."); // // Verify that no pixel data have been written to this file yet. // if (!_data->tileOffsets.isEmpty()) THROW (IEX_NAMESPACE::LogicExc, "Quick pixel copy from image " "file \"" << in.fileName() << "\" to image " "file \"" << _streamData->os->fileName() << "\" " "failed. \"" << fileName() << "\" " "already contains pixel data."); // // Calculate the total number of tiles in the file // int numAllTiles = 0; switch (levelMode ()) { case ONE_LEVEL: case MIPMAP_LEVELS: for (int i_l = 0; i_l < numLevels (); ++i_l) numAllTiles += numXTiles (i_l) * numYTiles (i_l); break; case RIPMAP_LEVELS: for (int i_ly = 0; i_ly < numYLevels (); ++i_ly) for (int i_lx = 0; i_lx < numXLevels (); ++i_lx) numAllTiles += numXTiles (i_lx) * numYTiles (i_ly); break; default: throw IEX_NAMESPACE::ArgExc ("Unknown LevelMode format."); } bool random_y = _data->lineOrder==RANDOM_Y; std::vector dx_table(random_y ? numAllTiles : 1); std::vector dy_table(random_y ? numAllTiles : 1); std::vector lx_table(random_y ? numAllTiles : 1); std::vector ly_table(random_y ? numAllTiles : 1); if(random_y) { in.tileOrder(&dx_table[0],&dy_table[0],&lx_table[0],&ly_table[0]); _data->nextTileToWrite.dx=dx_table[0]; _data->nextTileToWrite.dy=dy_table[0]; _data->nextTileToWrite.lx=lx_table[0]; _data->nextTileToWrite.ly=ly_table[0]; } for (int i = 0; i < numAllTiles; ++i) { const char *pixelData; int pixelDataSize; int dx = _data->nextTileToWrite.dx; int dy = _data->nextTileToWrite.dy; int lx = _data->nextTileToWrite.lx; int ly = _data->nextTileToWrite.ly; in.rawTileData (dx, dy, lx, ly, pixelData, pixelDataSize); writeTileData (_streamData, _data, dx, dy, lx, ly, pixelData, pixelDataSize); if(random_y) { if(inextTileToWrite.dx=dx_table[i+1]; _data->nextTileToWrite.dy=dy_table[i+1]; _data->nextTileToWrite.lx=lx_table[i+1]; _data->nextTileToWrite.ly=ly_table[i+1]; } }else{ _data->nextTileToWrite=_data->nextTileCoord(_data->nextTileToWrite); } } } void TiledOutputFile::copyPixels (InputFile &in) { copyPixels (*in.tFile()); } void TiledOutputFile::copyPixels (InputPart &in) { copyPixels (*in.file); } void TiledOutputFile::copyPixels (TiledInputPart &in) { copyPixels (*in.file); } unsigned int TiledOutputFile::tileXSize () const { return _data->tileDesc.xSize; } unsigned int TiledOutputFile::tileYSize () const { return _data->tileDesc.ySize; } LevelMode TiledOutputFile::levelMode () const { return _data->tileDesc.mode; } LevelRoundingMode TiledOutputFile::levelRoundingMode () const { return _data->tileDesc.roundingMode; } int TiledOutputFile::numLevels () const { if (levelMode() == RIPMAP_LEVELS) THROW (IEX_NAMESPACE::LogicExc, "Error calling numLevels() on image " "file \"" << fileName() << "\" " "(numLevels() is not defined for RIPMAPs)."); return _data->numXLevels; } int TiledOutputFile::numXLevels () const { return _data->numXLevels; } int TiledOutputFile::numYLevels () const { return _data->numYLevels; } bool TiledOutputFile::isValidLevel (int lx, int ly) const { if (lx < 0 || ly < 0) return false; if (levelMode() == MIPMAP_LEVELS && lx != ly) return false; if (lx >= numXLevels() || ly >= numYLevels()) return false; return true; } int TiledOutputFile::levelWidth (int lx) const { try { int retVal = levelSize (_data->minX, _data->maxX, lx, _data->tileDesc.roundingMode); return retVal; } catch (IEX_NAMESPACE::BaseExc &e) { REPLACE_EXC (e, "Error calling levelWidth() on image " "file \"" << fileName() << "\". " << e.what()); throw; } } int TiledOutputFile::levelHeight (int ly) const { try { return levelSize (_data->minY, _data->maxY, ly, _data->tileDesc.roundingMode); } catch (IEX_NAMESPACE::BaseExc &e) { REPLACE_EXC (e, "Error calling levelHeight() on image " "file \"" << fileName() << "\". " << e.what()); throw; } } int TiledOutputFile::numXTiles (int lx) const { if (lx < 0 || lx >= _data->numXLevels) THROW (IEX_NAMESPACE::LogicExc, "Error calling numXTiles() on image " "file \"" << _streamData->os->fileName() << "\" " "(Argument is not in valid range)."); return _data->numXTiles[lx]; } int TiledOutputFile::numYTiles (int ly) const { if (ly < 0 || ly >= _data->numYLevels) THROW (IEX_NAMESPACE::LogicExc, "Error calling numXTiles() on image " "file \"" << _streamData->os->fileName() << "\" " "(Argument is not in valid range)."); return _data->numYTiles[ly]; } Box2i TiledOutputFile::dataWindowForLevel (int l) const { return dataWindowForLevel (l, l); } Box2i TiledOutputFile::dataWindowForLevel (int lx, int ly) const { try { return OPENEXR_IMF_INTERNAL_NAMESPACE::dataWindowForLevel ( _data->tileDesc, _data->minX, _data->maxX, _data->minY, _data->maxY, lx, ly); } catch (IEX_NAMESPACE::BaseExc &e) { REPLACE_EXC (e, "Error calling dataWindowForLevel() on image " "file \"" << fileName() << "\". " << e.what()); throw; } } Box2i TiledOutputFile::dataWindowForTile (int dx, int dy, int l) const { return dataWindowForTile (dx, dy, l, l); } Box2i TiledOutputFile::dataWindowForTile (int dx, int dy, int lx, int ly) const { try { if (!isValidTile (dx, dy, lx, ly)) throw IEX_NAMESPACE::ArgExc ("Arguments not in valid range."); return OPENEXR_IMF_INTERNAL_NAMESPACE::dataWindowForTile ( _data->tileDesc, _data->minX, _data->maxX, _data->minY, _data->maxY, dx, dy, lx, ly); } catch (IEX_NAMESPACE::BaseExc &e) { REPLACE_EXC (e, "Error calling dataWindowForTile() on image " "file \"" << fileName() << "\". " << e.what()); throw; } } bool TiledOutputFile::isValidTile (int dx, int dy, int lx, int ly) const { return ((lx < _data->numXLevels && lx >= 0) && (ly < _data->numYLevels && ly >= 0) && (dx < _data->numXTiles[lx] && dx >= 0) && (dy < _data->numYTiles[ly] && dy >= 0)); } void TiledOutputFile::updatePreviewImage (const PreviewRgba newPixels[]) { Lock lock (*_streamData); if (_data->previewPosition <= 0) THROW (IEX_NAMESPACE::LogicExc, "Cannot update preview image pixels. " "File \"" << fileName() << "\" does not " "contain a preview image."); // // Store the new pixels in the header's preview image attribute. // PreviewImageAttribute &pia = _data->header.typedAttribute ("preview"); PreviewImage &pi = pia.value(); PreviewRgba *pixels = pi.pixels(); int numPixels = pi.width() * pi.height(); for (int i = 0; i < numPixels; ++i) pixels[i] = newPixels[i]; // // Save the current file position, jump to the position in // the file where the preview image starts, store the new // preview image, and jump back to the saved file position. // Int64 savedPosition = _streamData->os->tellp(); try { _streamData->os->seekp (_data->previewPosition); pia.writeValueTo (*_streamData->os, _data->version); _streamData->os->seekp (savedPosition); } catch (IEX_NAMESPACE::BaseExc &e) { REPLACE_EXC (e, "Cannot update preview image pixels for " "file \"" << fileName() << "\". " << e.what()); throw; } } void TiledOutputFile::breakTile (int dx, int dy, int lx, int ly, int offset, int length, char c) { Lock lock (*_streamData); Int64 position = _data->tileOffsets (dx, dy, lx, ly); if (!position) THROW (IEX_NAMESPACE::ArgExc, "Cannot overwrite tile " "(" << dx << ", " << dy << ", " << lx << "," << ly << "). " "The tile has not yet been stored in " "file \"" << fileName() << "\"."); _streamData->currentPosition = 0; _streamData->os->seekp (position + offset); for (int i = 0; i < length; ++i) _streamData->os->write (&c, 1); } OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT