/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "internal_shared.hpp" #include "opencv2/gpu/device/saturate_cast.hpp" #include "opencv2/gpu/device/transform.hpp" using namespace cv::gpu::device; namespace cv { namespace gpu { namespace matrix_operations { template struct shift_and_sizeof; template <> struct shift_and_sizeof { enum { shift = 0 }; }; template <> struct shift_and_sizeof { enum { shift = 0 }; }; template <> struct shift_and_sizeof { enum { shift = 1 }; }; template <> struct shift_and_sizeof { enum { shift = 1 }; }; template <> struct shift_and_sizeof { enum { shift = 2 }; }; template <> struct shift_and_sizeof { enum { shift = 2 }; }; template <> struct shift_and_sizeof { enum { shift = 3 }; }; /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// CopyTo ///////////////////////////////// /////////////////////////////////////////////////////////////////////////// template __global__ void copy_to_with_mask(T * mat_src, T * mat_dst, const unsigned char * mask, int cols, int rows, int step_mat, int step_mask, int channels) { size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < cols * channels ) && (y < rows)) if (mask[y * step_mask + x / channels] != 0) { size_t idx = y * ( step_mat >> shift_and_sizeof::shift ) + x; mat_dst[idx] = mat_src[idx]; } } typedef void (*CopyToFunc)(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels, const cudaStream_t & stream); template void copy_to_with_mask_run(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels, const cudaStream_t & stream) { dim3 threadsPerBlock(16,16, 1); dim3 numBlocks ( divUp(mat_src.cols * channels , threadsPerBlock.x) , divUp(mat_src.rows , threadsPerBlock.y), 1); copy_to_with_mask<<>> ((T*)mat_src.data, (T*)mat_dst.data, (unsigned char*)mask.data, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall ( cudaThreadSynchronize() ); } void copy_to_with_mask(const DevMem2D& mat_src, DevMem2D mat_dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream) { static CopyToFunc tab[8] = { copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, 0 }; CopyToFunc func = tab[depth]; if (func == 0) cv::gpu::error("Unsupported copyTo operation", __FILE__, __LINE__); func(mat_src, mat_dst, mask, channels, stream); } /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// SetTo ////////////////////////////////// /////////////////////////////////////////////////////////////////////////// __constant__ uchar scalar_8u[4]; __constant__ schar scalar_8s[4]; __constant__ ushort scalar_16u[4]; __constant__ short scalar_16s[4]; __constant__ int scalar_32s[4]; __constant__ float scalar_32f[4]; __constant__ double scalar_64f[4]; template __device__ T readScalar(int i); template <> __device__ uchar readScalar(int i) {return scalar_8u[i];} template <> __device__ schar readScalar(int i) {return scalar_8s[i];} template <> __device__ ushort readScalar(int i) {return scalar_16u[i];} template <> __device__ short readScalar(int i) {return scalar_16s[i];} template <> __device__ int readScalar(int i) {return scalar_32s[i];} template <> __device__ float readScalar(int i) {return scalar_32f[i];} template <> __device__ double readScalar(int i) {return scalar_64f[i];} void writeScalar(const uchar* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_8u, vals, sizeof(uchar) * 4) ); } void writeScalar(const schar* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_8s, vals, sizeof(schar) * 4) ); } void writeScalar(const ushort* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_16u, vals, sizeof(ushort) * 4) ); } void writeScalar(const short* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_16s, vals, sizeof(short) * 4) ); } void writeScalar(const int* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_32s, vals, sizeof(int) * 4) ); } void writeScalar(const float* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_32f, vals, sizeof(float) * 4) ); } void writeScalar(const double* vals) { cudaSafeCall( cudaMemcpyToSymbol(scalar_64f, vals, sizeof(double) * 4) ); } template __global__ void set_to_without_mask(T * mat, int cols, int rows, int step, int channels) { size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < cols * channels ) && (y < rows)) { size_t idx = y * ( step >> shift_and_sizeof::shift ) + x; mat[idx] = readScalar(x % channels); } } template __global__ void set_to_with_mask(T * mat, const unsigned char * mask, int cols, int rows, int step, int channels, int step_mask) { size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < cols * channels ) && (y < rows)) if (mask[y * step_mask + x / channels] != 0) { size_t idx = y * ( step >> shift_and_sizeof::shift ) + x; mat[idx] = readScalar(x % channels); } } template void set_to_gpu(const DevMem2D& mat, const T* scalar, const DevMem2D& mask, int channels, cudaStream_t stream) { writeScalar(scalar); dim3 threadsPerBlock(32, 8, 1); dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1); set_to_with_mask<<>>((T*)mat.data, (uchar*)mask.data, mat.cols, mat.rows, mat.step, channels, mask.step); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall ( cudaThreadSynchronize() ); } template void set_to_gpu(const DevMem2D& mat, const uchar* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const schar* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const ushort* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const short* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const int* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const float* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const double* scalar, const DevMem2D& mask, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const T* scalar, int channels, cudaStream_t stream) { writeScalar(scalar); dim3 threadsPerBlock(32, 8, 1); dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1); set_to_without_mask<<>>((T*)mat.data, mat.cols, mat.rows, mat.step, channels); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall ( cudaThreadSynchronize() ); } template void set_to_gpu(const DevMem2D& mat, const uchar* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const schar* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const ushort* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const short* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const int* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const float* scalar, int channels, cudaStream_t stream); template void set_to_gpu(const DevMem2D& mat, const double* scalar, int channels, cudaStream_t stream); /////////////////////////////////////////////////////////////////////////// //////////////////////////////// ConvertTo //////////////////////////////// /////////////////////////////////////////////////////////////////////////// template class Convertor { public: Convertor(double alpha_, double beta_) : alpha(alpha_), beta(beta_) {} __device__ D operator()(const T& src) { return saturate_cast(alpha * src + beta); } private: double alpha, beta; }; template void cvt_(const DevMem2D& src, const DevMem2D& dst, double alpha, double beta, cudaStream_t stream) { cudaSafeCall( cudaSetDoubleForDevice(&alpha) ); cudaSafeCall( cudaSetDoubleForDevice(&beta) ); Convertor op(alpha, beta); transform((DevMem2D_)src, (DevMem2D_)dst, op, stream); } void convert_gpu(const DevMem2D& src, int sdepth, const DevMem2D& dst, int ddepth, double alpha, double beta, cudaStream_t stream = 0) { typedef void (*caller_t)(const DevMem2D& src, const DevMem2D& dst, double alpha, double beta, cudaStream_t stream); static const caller_t tab[8][8] = { {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {0,0,0,0,0,0,0,0} }; caller_t func = tab[sdepth][ddepth]; if (!func) cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__); func(src, dst, alpha, beta, stream); } }}}