The OpenCV Reference Manual
Release 2.3.3

March 11, 2012

CONTENTS

1 Introduction

1.1 APIConcepts o o i e e e e e e e e e e e 1
2 core. The Core Functionality 7
2.1 Basic SIIUCIUIES . . . v v o v e it e 7
2.2 Basic C Structures and Operations oo 45
2.3 Dynamic SHrUCTUIES« v v v v i e e e e e e e e e e e e e e e e e 77
2.4 Operations ON ATTAYS . . v v v v v v v e 104
2.5 Drawing FUnNCtions o . i e e e e e e e e e e e e e 160
2.6 XML/YAML Persistence o v v v v i it e e e e e e e e e e e e e e e e e 170
2.7 XML/YAML Persistence (C API) e 173
2.8 CIUStering o v it e e e e e 189
2.9 Utility and System Functions and Macros o i i i e 191
3 imgproc. Image Processing 201
3.1 ImageFiltering e e e 201
3.2 Geometric Image Transformations o e e 228
3.3 Miscellaneous Image Transformations 0 i e e 240
3.4 HiStOZrams o vt e e e e e e e e e e e e e e e e e e 254
3.5 Structural Analysis and Shape Descriptors L. o oo 266
3.6 Planar Subdivisions (C API) e e e e 279
3.7 Motion Analysis and Object Tracking e 286
3.8 Feature Detection L e e e 289
3.9 ObjectDetection i i e e e e e e e e e e e e e e e e 301
4 highgui. High-level GUI and Media I/O 303
4.1 UserlInterface L e e 303
4.2 Reading and Writing Imagesand Video L oo 308
43 QtNew Functions e e e e e e e e e e 317
5 video. Video Analysis 325
5.1 Motion Analysis and Object Tracking 325
6 calib3d. Camera Calibration and 3D Reconstruction 339
6.1 Camera Calibration and 3D Reconstruction o . o i it vttt 339
7 features2d. 2D Features Framework 371
7.1 Feature Detection and Description 0 i e e e e e e 371
7.2 Common Interfaces of Feature Detectors i i 384
7.3 Common Interfaces of Descriptor Extractors 395

10

11

12

7.4 Common Interfaces of Descriptor Matchers
7.5 Common Interfaces of Generic Descriptor Matchers
7.6 Drawing Function of Keypoints and Matches
7.7 Object Categorizationt e e e e e e e

objdetect. Object Detection
8.1 Cascade Classification o i i i i i e e e e e e e e e e e
8.2 Latent SVM e e

ml. Machine Learning

9.1 Statistical Models L e
9.2 Normal Bayes Classifier e
9.3 K-Nearest Neighbors L e
9.4 Support Vector Machines o i v i e e e e e e e e e
0.5 Decision Trees v o i i e e e e e e e e
0.6 BOOSHUNZ o i e e e e e e e e e e e e e e
9.7 Gradient Boosted Trees o . i e e e e e e e e
9.8 Random Trees i e e e e e e
9.9 Extremely randomized treeso e e e e e e
9.10 Expectation Maximization v v v v it e e e e e e e e e e e e e e
9.11 Neural Networks o o e
0.12 MLData. e e e e

flann. Clustering and Search in Multi-Dimensional Spaces
10.1 Fast Approximate Nearest Neighbor Search
10.2 Clustering o e e e e e

gpu. GPU-accelerated Computer Vision

11.1 GPU Module Introduction i e e e e e e e e
11.2 [Initalization and Information L
11.3 Data Structures o v it i e
11.4 Operations on MatriCes v v v v it e
11.5 Per-element Operations v v v v v v et e e e e e e e e e e e e e e e
11.6 Image Processing o i i i e e e
11.7 Matrix Reductions o e e e e e e e e e e
11.8 Object Detection o o v it e e e e e
11.9 Feature Detection and Description 0 e
11.10 Image Filtering o ot e e e e e e e e e e e e e e e e e e
11.11 Camera Calibration and 3D Reconstruction
11.12 Video Analysis o o o o e e e e e

stitching. Images stitching

12.1 Stitching Pipeline e e e e e e
12.2 High Level Functionality
123 Camera o e e e e e e e e e e e
12.4 Features Finding and Images Matching
12.5 Rotation Estimation e e e e e
12.6 Autocalibration e e
12.7 Images Warping o i i e e e e e e e e e e e e e
12.8 Seam Estimation oL e e e e e e e e e e e
12.9 Exposure COmMpensation v v v v v vt v e e e e e e e e e e e
12.10 Tmage Blenders L e e e e e e e e

Bibliography

419
419
425

431
431
434
436
439
445
452
456
461
465
465
471
476

483
483
487

489
489
491
495
501
505
513
529
532
537
550
565
573

581
581
582
585
586
591
595
596
601
603
605

609

CHAPTER
ONE

INTRODUCTION

OpenCV (Open Source Computer Vision Library: http://opencv.willowgarage.com/wiki/) is an open-source BSD-
licensed library that includes several hundreds of computer vision algorithms. The document describes the so-called
OpenCV 2.x API, which is essentially a C++ API, as opposite to the C-based OpenCV 1.x API. The latter is described
in opencv1x.pdf.

OpenCV has a modular structure, which means that the package includes several shared or static libraries. The
following modules are available:

* core - a compact module defining basic data structures, including the dense multi-dimensional array Mat and
basic functions used by all other modules.

 imgproc - an image processing module that includes linear and non-linear image filtering, geometrical image
transformations (resize, affine and perspective warping, generic table-based remapping), color space conversion,
histograms, and so on.

* video - a video analysis module that includes motion estimation, background subtraction, and object tracking
algorithms.

* calib3d - basic multiple-view geometry algorithms, single and stereo camera calibration, object pose estimation,
stereo correspondence algorithms, and elements of 3D reconstruction.

features2d - salient feature detectors, descriptors, and descriptor matchers.

objdetect - detection of objects and instances of the predefined classes (for example, faces, eyes, mugs, people,
cars, and so on).

¢ highgui - an easy-to-use interface to video capturing, image and video codecs, as well as simple UI capabilities.
* gpu - GPU-accelerated algorithms from different OpenCV modules.
e ... some other helper modules, such as FLANN and Google test wrappers, Python bindings, and others.

The further chapters of the document describe functionality of each module. But first, make sure to get familiar with
the common API concepts used thoroughly in the library.

1.1 API Concepts

cv Namespace

All the OpenCV classes and functions are placed into the cv namespace. Therefore, to access this functionality from
your code, use the cv: : specifier or using namespace cv; directive:

http://opencv.willowgarage.com/wiki/

The OpenCV Reference Manual, Release 2.3.3

#include "opencv2/core/core.hpp"

cv::Mat H = cv::findHomography(pointsl, points2, CV_RANSAC, 5);

or

#include "opencv2/core/core.hpp"
using namespace cv;

Mat H = findHomography(pointsl, points2, CV_RANSAC, 5);

Some of the current or future OpenCV external names may conflict with STL or other libraries. In this case, use
explicit namespace specifiers to resolve the name conflicts:

Mat a(100, 100, CV_32F);

randu(a, Scalar::all(l), Scalar::all(std::rand()));
cv::log(a, a);

a /= std::log(2.);

Automatic Memory Management

OpenCV handles all the memory automatically.

First of all, std::vector, Mat, and other data structures used by the functions and methods have destructors that
deallocate the underlying memory buffers when needed. This means that the destructors do not always deallocate the
buffers as in case of Mat. They take into account possible data sharing. A destructor decrements the reference counter
associated with the matrix data buffer. The buffer is deallocated if and only if the reference counter reaches zero, that
is, when no other structures refer to the same buffer. Similarly, when a Mat instance is copied, no actual data is really
copied. Instead, the reference counter is incremented to memorize that there is another owner of the same data. There
is also the Mat: : clone method that creates a full copy of the matrix data. See the example below:

// create a big 8Mb matrix
Mat A(1000, 1000, CV_64F);

// create another header for the same matrix;

// this is an instant operation, regardless of the matrix size.

Mat B = A;

// create another header for the 3-rd row of A; no data is copied either
Mat C = B.row(3);

// now create a separate copy of the matrix

Mat D = B.clone();

// copy the 5-th row of B to C, that is, copy the 5-th row of A

// to the 3-rd row of A.

B.row(5).copyTo(C);

// now let A and D share the data; after that the modified version
// of A is still referenced by B and C.

A =1D;

// now make B an empty matrix (which references no memory buffers),
// but the modified version of A will still be referenced by C,

// despite that C is just a single row of the original A
B.release();

// finally, make a full copy of C. As a result, the big modified
// matrix will be deallocated, since it is not referenced by anyone
C = C.clone();

2 Chapter 1. Introduction

The OpenCV Reference Manual, Release 2.3.3

You see that the use of Mat and other basic structures is simple. But what about high-level classes or even user
data types created without taking automatic memory management into account? For them, OpenCV offers the Ptr<>
template class that is similar to std: : shared_ptr from C++ TR1. So, instead of using plain pointers:

T+ ptr = new T(...);
you can use:
Ptr<T> ptr = new T(...);

That is, Ptr<T> ptr incapsulates a pointer to a T instance and a reference counter associated with the pointer. See the
Ptr description for details.

Automatic Allocation of the Output Data

OpenCV deallocates the memory automatically, as well as automatically allocates the memory for output function
parameters most of the time. So, if a function has one or more input arrays (cv: : Mat instances) and some output arrays,
the output arrays are automatically allocated or reallocated. The size and type of the output arrays are determined from
the size and type of input arrays. If needed, the functions take extra parameters that help to figure out the output array
properties.

Example:

#include "cv.h"
#include "highgui.h"

using namespace cv;

int main(int, charsxx)

{
VideoCapture cap(0);
if(!cap.isOpened()) return -1;
Mat frame, edges;
namedWindow("edges",1);
for(;;)
{
cap >> frame;
cvtColor(frame, edges, CV_BGR2GRAY);
GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
Canny(edges, edges, 0, 30, 3);
imshow("edges", edges);
if(waitKey(30) >= 0) break;
}
return 0;
}

The array frame is automatically allocated by the >> operator since the video frame resolution and the bit-depth is
known to the video capturing module. The array edges is automatically allocated by the cvtColor function. It has
the same size and the bit-depth as the input array. The number of channels is 1 because the color conversion code
CV_BGR2GRAY is passed, which means a color to grayscale conversion. Note that frame and edges are allocated only
once during the first execution of the loop body since all the next video frames have the same resolution. If you
somehow change the video resolution, the arrays are automatically reallocated.

The key component of this technology is the Mat : : create method. It takes the desired array size and type. If the array
already has the specified size and type, the method does nothing. Otherwise, it releases the previously allocated data,
if any (this part involves decrementing the reference counter and comparing it with zero), and then allocates a new

1.1. API Concepts 3

The OpenCV Reference Manual, Release 2.3.3

buffer of the required size. Most functions call the Mat: : create method for each output array, and so the automatic
output data allocation is implemented.

Some notable exceptions from this scheme are cv::mixChannels, cv::RNG::fill, and a few other functions and
methods. They are not able to allocate the output array, so you have to do this in advance.

Saturation Arithmetics

As a computer vision library, OpenCV deals a lot with image pixels that are often encoded in a compact, 8- or 16-bit
per channel, form and thus have a limited value range. Furthermore, certain operations on images, like color space
conversions, brightness/contrast adjustments, sharpening, complex interpolation (bi-cubic, Lanczos) can produce val-
ues out of the available range. If you just store the lowest 8 (16) bits of the result, this results in visual artifacts and
may affect a further image analysis. To solve this problem, the so-called saturation arithmetics is used. For example,
to store r, the result of an operation, to an 8-bit image, you find the nearest value within the 0..255 range:

[(x,y) = min(max(round(r), 0), 255)

Similar rules are applied to 8-bit signed, 16-bit signed and unsigned types. This semantics is used everywhere in the
library. In C++ code, it is done using the saturate_cast<> functions that resemble standard C++ cast operations.
See below the implementation of the formula provided above:

I.at<uchar>(y, x) = saturate_cast<uchar>(r);

where cv: :uchar is an OpenCV 8-bit unsigned integer type. In the optimized SIMD code, such SSE2 instructions as
paddusb, packuswb, and so on are used. They help achieve exactly the same behavior as in C++ code.

Fixed Pixel Types. Limited Use of Templates

Templates is a great feature of C++ that enables implementation of very powerful, efficient and yet safe data struc-
tures and algorithms. However, the extensive use of templates may dramatically increase compilation time and code
size. Besides, it is difficult to separate an interface and implementation when templates are used exclusively. This
could be fine for basic algorithms but not good for computer vision libraries where a single algorithm may span thou-
sands lines of code. Because of this and also to simplify development of bindings for other languages, like Python,
Java, Matlab that do not have templates at all or have limited template capabilities, the current OpenCV implemen-
tation is based on polymorphism and runtime dispatching over templates. In those places where runtime dispatching
would be too slow (like pixel access operators), impossible (generic Ptr<> implementation), or just very inconve-
nient (saturate_cast<>()) the current implementation introduces small template classes, methods, and functions.
Anywhere else in the current OpenCYV version the use of templates is limited.

Consequently, there is a limited fixed set of primitive data types the library can operate on. That is, array elements
should have one of the following types:

* 8-bit unsigned integer (uchar)

* 8-bit signed integer (schar)

* 16-bit unsigned integer (ushort)

* 16-bit signed integer (short)

* 32-bit signed integer (int)

* 32-bit floating-point number (float)

* 64-bit floating-point number (double)

* atuple of several elements where all elements have the same type (one of the above). An array whose elements
are such tuples, are called multi-channel arrays, as opposite to the single-channel arrays, whose elements are

4 Chapter 1. Introduction

The OpenCV Reference Manual, Release 2.3.3

scalar values. The maximum possible number of channels is defined by the CV_CN_MAX constant, which is
currently set to 512.

For these basic types, the following enumeration is applied:

enum { CV_8U=0, CV_8S=1, CV_1l6U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 };

Multi-channel (n-channel) types can be specified using the following options:
e CV_8UC1 ... CV_64FC4 constants (for a number of channels from 1 to 4)

e CV_8UC(n) ... CV_64FC(n) or CV_MAKETYPE(CV_8U, n) ... CV_MAKETYPE(CV_64F, n) macros when the
number of channels is more than 4 or unknown at the compilation time.

Note: CV_32FC1l == CV_32F, (CV_32FC2 == CV_32FC(2) == CV_MAKETYPE(CV_32F, 2), and
CV_MAKETYPE (depth, n) == ((x&7)<<3) + (n-1). This means that the constant type is formed from the
depth, taking the lowest 3 bits, and the number of channels minus 1, taking the next Log2 (CV_CN_MAX) bits.

Examples:

Mat mtx(3, 3, CV_32F); // make a 3x3 floating-point matrix
Mat cmtx(10, 1, CV_64FC2); // make a 10x1 2-channel floating-point
// matrix (10-element complex vector)
Mat img(Size(1920, 1080), CV_8UC3); // make a 3-channel (color) image
// of 1920 columns and 1080 rows.
Mat grayscale(image.size(), CV_MAKETYPE(image.depth(), 1)); // make a 1-channel image of
// the same size and same
// channel type as img

Arrays with more complex elements cannot be constructed or processed using OpenCV. Furthermore, each function
or method can handle only a subset of all possible array types. Usually, the more complex the algorithm is, the smaller
the supported subset of formats is. See below typical examples of such limitations:

* The face detection algorithm only works with 8-bit grayscale or color images.

* Linear algebra functions and most of the machine learning algorithms work with floating-point arrays only.
* Basic functions, such as cv: :add, support all types.

 Color space conversion functions support 8-bit unsigned, 16-bit unsigned, and 32-bit floating-point types.

The subset of supported types for each function has been defined from practical needs and could be extended in future
based on user requests.

InputArray and OutputArray

Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical arrays. Usually, such functions
take cpp:class:Mat as parameters, but in some cases it’s more convenient to use std: :vector<> (for a point set, for
example) or Matx<> (for 3x3 homography matrix and such). To avoid many duplicates in the API, special “proxy”
classes have been introduced. The base “proxy” class is InputArray. It is used for passing read-only arrays on a
function input. The derived from InputArray class OutputArray is used to specify an output array for a function.
Normally, you should not care of those intermediate types (and you should not declare variables of those types explic-
itly) - it will all just work automatically. You can assume that instead of InputArray/OutputArray you can always
use Mat, std: :vector<>, Matx<>, Vec<> or Scalar. When a function has an optional input or output array, and you
do not have or do not want one, pass cv: :noArray().

1.1. API Concepts 5

The OpenCV Reference Manual, Release 2.3.3

Error Handling

OpenCV uses exceptions to signal critical errors. When the input data has a correct format and belongs to the specified
value range, but the algorithm cannot succeed for some reason (for example, the optimization algorithm did not
converge), it returns a special error code (typically, just a boolean variable).

The exceptions can be instances of the cv: :Exception class or its derivatives. In its turn, cv: : Exception is a deriva-
tive of std: :exception. So it can be gracefully handled in the code using other standard C++ library components.

The exception is typically thrown either using the CV_Error(errcode, description) macro, or its printf-like
CV_Error_(errcode, printf-spec, (printf-args)) variant, or using the CV_Assert(condition) macro that
checks the condition and throws an exception when it is not satisfied. For performance-critical code, there is
CV_DbgAssert(condition) that is only retained in the Debug configuration. Due to the automatic memory man-
agement, all the intermediate buffers are automatically deallocated in case of a sudden error. You only need to add a
try statement to catch exceptions, if needed:

try
{
. // call OpenCV

}
catch(cv::Exception& e)
{

const char* err_msg = e.what();

std::cout << "exception caught: " << err_msg << std::endl;
}

Multi-threading and Re-enterability

The current OpenCV implementation is fully re-enterable. That is, the same function, the same constant method of a
class instance, or the same non-constant method of different class instances can be called from different threads. Also,
the same cv::Mat can be used in different threads because the reference-counting operations use the architecture-
specific atomic instructions.

6 Chapter 1. Introduction

CHAPTER
TWO

CORE. THE CORE FUNCTIONALITY

2.1 Basic Structures

DataType

class DataType

Template “trait” class for OpenCV primitive data types. A primitive OpenCV data type is one of unsigned char,
bool, signed char, unsigned short, signed short, int, float, double, or a tuple of values of one of these
types, where all the values in the tuple have the same type. Any primitive type from the list can be defined by
an identifier in the form CV_<bit-depth>{U|S|F}C(<number_of_channels>), for example: uchar ~ CV_8UC1,
3-element floating-point tuple ~ CV_32FC3, and so on. A universal OpenCV structure that is able to store a single
instance of such a primitive data type is Vec. Multiple instances of such a type can be stored in a std: :vector, Mat,
Mat_, SparseMat, SparseMat_, or any other container that is able to store Vec instances.

The DataType class is basically used to provide a description of such primitive data types without adding any fields
or methods to the corresponding classes (and it is actually impossible to add anything to primitive C/C++ data types).
This technique is known in C++ as class traits. It is not DataType itself that is used but its specialized versions, such
as:

template<> class DataType<uchar>
{

typedef uchar value_type;

typedef int work_type;

typedef uchar channel_type;

enum { channel_type = CV_8U, channels = 1, fmt="u’, type = CV_8U };
b

template<typename _Tp> DataType<std::complex<_Tp> >
{
typedef std::complex<_Tp> value_type;
typedef std::complex<_Tp> work_type;
typedef _Tp channel_type;
// DataDepth is another helper trait class
enum { depth = DataDepth<_Tp>::value, channels=2,
fmt=(channels-1)*256+DataDepth<_Tp>::fmt,
type=CV_MAKETYPE (depth, channels) };
+

The main purpose of this class is to convert compilation-time type information to an OpenCV-compatible data type
identifier, for example:

The OpenCV Reference Manual, Release 2.3.3

// allocates a 30x40 floating-point matrix
Mat A(30, 40, DataType<float>::type);

Mat B = Mat_<std::complex<double> >(3, 3);
// the statement below will print 6, 2 /*, that is depth == CV_64F, channels == 2 x/
cout << B.depth() << ", " << B.channels() << endl;

So, such traits are used to tell OpenCV which data type you are working with, even if such a type is not native to
OpenCV. For example, the matrix B intialization above is compiled because OpenCV defines the proper specialized
template class DataType<complex<_Tp> > . This mechanism is also useful (and used in OpenCV this way) for
generic algorithms implementations.

Point_

class Point_

Template class for 2D points specified by its coordinates x and y . An instance of the class is interchangeable with
C structures, CvPoint and CvPoint2D32f . There is also a cast operator to convert point coordinates to the specified
type. The conversion from floating-point coordinates to integer coordinates is done by rounding. Commonly, the
conversion uses this operation for each of the coordinates. Besides the class members listed in the declaration above,
the following operations on points are implemented:

ptl pt2 + pt3;
ptl = pt2 - pt3;
ptl = pt2 * a;
ptl = a * pt2;

ptl += pt2;

ptl -= pt2;

ptl *= a;

double value = norm(pt); // L2 norm
ptl == pt2;

ptl != pt2;

For your convenience, the following type aliases are defined:

typedef Point_<int> Point2i;
typedef Point2i Point;

typedef Point_<float> Point2f;
typedef Point_<double> Point2d;

Example:

Point2f a(0.3f, 0.f), b(0.f, 0.4f);
Point pt = (a + b)x10.f;
cout << pt.x << ", " << pt.y << endl;

Point3_

class Point3_

Template class for 3D points specified by its coordinates x, y and z . An instance of the class is interchangeable with
the C structure CvPoint2D32f . Similarly to Point_ , the coordinates of 3D points can be converted to another type.
The vector arithmetic and comparison operations are also supported.

The following Point3_<> aliases are available:

8 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

typedef Point3_<int> Point3i;
typedef Point3_<float> Point3f;
typedef Point3_<double> Point3d;

Size

class Size_

Template class for specfying the size of an image or rectangle. The class includes two members called width and
height. The structure can be converted to and from the old OpenCV structures CvSize and CvSize2D32f . The same
set of arithmetic and comparison operations as for Point_ is available.

OpenCV defines the following Size_<> aliases:

typedef Size_<int> Size2i;
typedef Size2i Size;
typedef Size_<float> Size2f;

Rect

class Rect_
Template class for 2D rectangles, described by the following parameters:

* Coordinates of the top-left corner. This is a default interpretation of Rect_::x and Rect_::y in OpenCV.
Though, in your algorithms you may count x and y from the bottom-left corner.

* Rectangle width and height.

OpenCV typically assumes that the top and left boundary of the rectangle are inclusive, while the right and bottom
boundaries are not. For example, the method Rect_: : contains returns true if

x < pt.x < x +width,y < pt.y <y + height

Virtually every loop over an image ROI in OpenCV (where ROI is specified by Rect_<int>) is implemented as:

for(int y = roi.y; y < roi.y + rect.height; y++)
for(int x = roi.x; X < roi.x + rect.width; x++)
{
/] ...
}

In addition to the class members, the following operations on rectangles are implemented:
* rect = rect &£ point (shifting a rectangle by a certain offset)
* rect = rect £ size (expanding or shrinking a rectangle by a certain amount)
* rect += point, rect -= point, rect += size, rect -= size (augmenting operations)
* rect = rectl & rect2 (rectangle intersection)
e rect = rectl | rect2 (minimum area rectangle containing rect2 and rect3)
* rect &= rectl, rect |= rectl (and the corresponding augmenting operations)
* rect == rectl, rect != rectl (rectangle comparison)

This is an example how the partial ordering on rectangles can be established (rectl C rect2):

2.1. Basic Structures 9

The OpenCV Reference Manual, Release 2.3.3

template<typename _Tp> inline bool
operator <= (const Rect_< Tp>& rl, const Rect_<_Tp>& r2)

{

return (rl & r2) == rl;

For your convenience, the Rect_<> alias is available:

typedef Rect_<int> Rect;

RotatedRect

class RotatedRect

Template class for rotated rectangles specified by the center, size, and the rotation angle in degrees.

TermCriteria

class TermCriteria

Template class defining termination criteria for iterative algorithms.

Matx

class Matx
Template class for small matrices whose type and size are known at compilation time:

template<typename _Tp, int m, int n> class Matx {...};

typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx1l2d;

typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx1l6d;

typedef Matx<float, 2, 1> Matx2lf;
typedef Matx<double, 2, 1> Matx21ld;

typedef Matx<float, 6, 1> Matx61lf;
typedef Matx<double, 6, 1> Matx61ld;

typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;

typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;

If you need a more flexible type, use Mat . The elements of the matrix M are accessible using the M(1,j) notation.
Most of the common matrix operations (see also Matrix Expressions) are available. To do an operation on Matx that
is not implemented, you can easily convert the matrix to Mat and backwards.

Matx33f m(

’

1, 2, 3,
4, 5, 6
7, 8, 9
m m

));
cout << sum(Mat(m+m.t())) << endl;

10 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Vec

class Vec
Template class for short numerical vectors, a partial case of Matx:

template<typename _Tp, int n> class Vec : public Matx<_Tp, n, 1> {...};

typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vecdb;

typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vecids;

typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vecdi;

typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;

typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6bd;

It is possible to convert Vec<T, 2> to/from Point_, Vec<T, 3> to/from Point3_ , and Vec<T,4> to CvScalar or
Scalar_. Use operator[] to access the elements of Vec.
All the expected vector operations are also implemented:

e vl = v2 + v3

e vl =v2 - v3

e vl = v2 % scale

* vl = scale x v2

e vl = -v2

* vl += v2 and other augmenting operations
e vl == v2, vl !=v2
* norm(vl) (euclidean norm)

The Vec class is commonly used to describe pixel types of multi-channel arrays. See Mat for details.

Scalar_

class Scalar_
Template class for a 4-element vector derived from Vec.

template<typename _Tp> class Scalar— : public Vec<_Tp, 4> { ... };

typedef Scalar_<double> Scalar;

2.1. Basic Structures 11

The OpenCV Reference Manual, Release 2.3.3

Being derived from Vec<_Tp, 4>, Scalar_ and Scalar can be used just as typical 4-element vectors. In addition,
they can be converted to/from CvScalar . The type Scalar is widely used in OpenCV to pass pixel values.

Range

class Range
Template class specifying a continuous subsequence (slice) of a sequence.

class Range

{
public:

int start, end;
}

The class is used to specify a row or a column span in a matrix (Mat) and for many other purposes. Range(a,b) is
basically the same as a:b in Matlab or a. .b in Python. As in Python, start is an inclusive left boundary of the range
and end is an exclusive right boundary of the range. Such a half-opened interval is usually denoted as [start, end) .

The static method Range: :all() returns a special variable that means “the whole sequence” or “the whole range”,
justlike ” : ” in Matlab or ” ... ” in Python. All the methods and functions in OpenCYV that take Range support this
special Range: :all() value. But, of course, in case of your own custom processing, you will probably have to check
and handle it explicitly:

void my_function(..., const Range& r,)

{
if(r == Range::all()) {
// process all the data
}

else {
// process [r.start, r.end)

}

Ptr

class Ptr
Template class for smart reference-counting pointers

template<typename _Tp> class Ptr

{

public:
// default constructor
Ptr();

// constructor that wraps the object pointer

Ptr(_Tp* _obj);

// destructor: calls release()

~Ptr();

// copy constructor; increments ptr’s reference counter
Ptr(const Ptr& ptr);

// assignment operator; decrements own reference counter
// (with release()) and increments ptr’s reference counter
Ptr& operator = (const Ptr& ptr);

// increments reference counter

void addref();

12 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

// decrements reference counter; when it becomes 0,
// delete_obj() is called

void release();

// user-specified custom object deletion operation.
// by default, "delete obj;" is called

void delete_obj();

// returns true if obj == 0;

bool empty() const;

// provide access to the object fields and methods
_Tp* operator -> ();
const _Tp*x operator -> () const;

// return the underlying object pointer;
// thanks to the methods, the Ptr<_Tp> can be
// used instead of _Tpx
operator _Tpx ();
operator const _Tpx*() const;
protected:
// the encapsulated object pointer
_Tp* obj;
// the associated reference counter
intx refcount;

};

The Ptr<_Tp> class is a template class that wraps pointers of the corresponding type. It is similar to shared_ptr that
is part of the Boost library (http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm) and also part of the
C++0x standard.

This class provides the following options:

* Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or a C structure. For
some objects, like files, windows, mutexes, sockets, and others, a copy constructor or an assignment operator
are difficult to define. For some other objects, like complex classifiers in OpenCYV, copy constructors are absent
and not easy to implement. Finally, some of complex OpenCV and your own data structures may be written in
C. However, copy constructors and default constructors can simplify programming a lot. Besides, they are often
required (for example, by STL containers). By wrapping a pointer to such a complex object TObj to Ptr<TObj>
, you automatically get all of the necessary constructors and the assignment operator.

O(1) complexity of the above-mentioned operations. While some structures, like std: : vector, provide a copy
constructor and an assignment operator, the operations may take a considerable amount of time if the data
structures are large. But if the structures are put into Ptr<> , the overhead is small and independent of the data
size.

* Automatic destruction, even for C structures. See the example below with FILEx* .

» Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers can store
only objects of the same type and the same size. The classical solution to store objects of different types in the
same container is to store pointers to the base class base_class_tx instead but then you loose the automatic
memory management. Again, by using Ptr<base_class_t>() instead of the raw pointers, you can solve the
problem.

The Ptr class treats the wrapped object as a black box. The reference counter is allocated and managed separately.
The only thing the pointer class needs to know about the object is how to deallocate it. This knowledge is incapsulated
in the Ptr::delete_obj () method that is called when the reference counter becomes 0. If the object is a C++ class
instance, no additional coding is needed, because the default implementation of this method calls delete obj; .
However, if the object is deallocated in a different way, the specialized method should be created. For example, if you
want to wrap FILE , the delete_obj may be implemented as follows:

2.1. Basic Structures 13

http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm
http://en.wikipedia.org/wiki/C++0x

The OpenCV Reference Manual, Release 2.3.3

template<> inline void Ptr<FILE>::delete_obj()
{
fclose(obj); // no need to clear the pointer afterwards,
// it is done externally.

// now use 1it:
Ptr<FILE> f(fopen("myfile.txt", "r"));
if(f.empty())
throw ...;
fprintf(f,);

// the file will be closed automatically by the Ptr<FILE> destructor.

Note: The reference increment/decrement operations are implemented as atomic operations, and therefore it is nor-
mally safe to use the classes in multi-threaded applications. The same is true for Mat and other C++ OpenCV classes
that operate on the reference counters.

Mat

class Mat
OpenCV C++ n-dimensional dense array class

class CV_EXPORTS Mat

{
public:
// ... a lot of methods ...
/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int flags;
//! the array dimensionality, >= 2
int dims;
//! the number of rows and columns or (-1, -1) when the array has more than 2 dimensions
int rows, cols;
//! pointer to the data
uchar* data;
//! pointer to the reference counter;
// when array points to user-allocated data, the pointer is NULL
int* refcount;
// other members
b

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used
to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point
clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat). The

14 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

data layout of the array M is defined by the array M.step[] , so that the address of element (ig, ..., iM.dims—1) >
where 0 < 1), < M.sizelk], is computed as:

addr(Miy, . im aime 1) = M.data + M.step[0] x ip + M.step[1] * i1 + ... + M.step[M.dims — 1] * im.dims—1
In case of a 2-dimensional array, the above formula is reduced to:
addr(My;) = M.data + M.step[0] * i + M.step[1] *j

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1]). This means
that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on.
M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

So, the data layout in Mat is fully compatible with CvMat, IplImage, and CvMatND types from OpenCV 1.x. It is also
compatible with the majority of dense array types from the standard toolkits and SDKs, such as Numpy (ndarray),
Win32 (independent device bitmaps), and others, that is, with any array that uses steps (or strides) to compute the
position of a pixel. Due to this compatibility, it is possible to make a Mat header for user-allocated data and process it
in-place using OpenCV functions.

There are many different ways to create a Mat object. The most popular options are listed below:

e Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValuel)
constructor. A new array of the specified size and type is allocated. type has the same meaning as in the
cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2 means a 2-channel
(complex) floating-point array, and so on.

// make a 7x7 complex matrix filled with 1+3j.

Mat M(7,7,CV_32FC2,Scalar(1,3));

// and now turn M to a 100x60 15-channel 8-bit matrix.
// The old content will be deallocated
M.create(100,60,CV_8UC(15));

As noted in the introduction to this chapter, create() allocates only a new array when the shape or type of the
current array are different from the specified ones.

Create a multi-dimensional array:

// create a 100x100x100 8-bit array
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));

It passes the number of dimensions =1 to the Mat constructor but the created array will be 2-dimensional with
the number of columns set to 1. So, Mat: :dims is always >= 2 (can also be 0 when the array is empty).

Use a copy constructor or assignment operator where there can be an array or expression on the right side (see
below). As noted in the introduction, the array assignment is an O(1) operation because it only copies the header
and increases the reference counter. The Mat::clone() method can be used to get a full (deep) copy of the
array when you need it.

Construct a header for a part of another array. It can be a single row, single column, several rows, several
columns, rectangular region in the array (called a minor in algebra) or a diagonal. Such operations are also O(1)
because the new header references the same data. You can actually modify a part of the array using this feature,
for example:

// add the 5-th row, multiplied by 3 to the 3rd row
M.row(3) = M.row(3) + M.row(5)*3;

// now copy the 7-th column to the 1-st column
// M.col(1) = M.col(7); // this will not work
Mat M1 = M.col(1);

2.1. Basic Structures 15

The OpenCV Reference Manual, Release 2.3.3

M.col(7).copyTo(M1);

// create a new 320x240 image

Mat img(Size(320,240),CV_8UC3);

// select a ROI

Mat roi(img, Rect(10,10,100,100));

// fill the ROI with (0,255,0) (which is green in RGB space);
// the original 320x240 image will be modified

roi = Scalar(0,255,0);

Due to the additional datastart and dataend members, it is possible to compute a relative sub-array position
in the main container array using locateR0I():

Mat A = Mat::eye(10, 10, CV_32S);

// extracts A columns, 1 (inclusive) to 3 (exclusive).

Mat B = A(Range::all(), Range(1l, 3));

// extracts B rows, 5 (inclusive) to 9 (exclusive).

// that is, C ~ A(Range(5, 9), Range(1l, 3))

Mat C = B(Range(5, 9), Range::all());

Size size; Point ofs;

C.locateR0I(size, ofs);

// size will be (width=10,height=10) and the ofs will be (x=1, y=5)

As in case of whole matrices, if you need a deep copy, use the clone() method of the extracted sub-matrices.
Make a header for user-allocated data. It can be useful to do the following:

1. Process “foreign” data using OpenCV (for example, when you implement a DirectShow* filter or a pro-
cessing module for gstreamer, and so on). For example:

void process_video_frame(const unsigned charx pixels,
int width, int height, int step)
{
Mat img(height, width, CV_8UC3, pixels, step);
GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
}

2. Quickly initialize small matrices and/or get a super-fast element access.

double m[31[3] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(3, 3, CV_64F, m).inv();

Partial yet very common cases of this user-allocated data case are conversions from CvMat and IplImage to
Mat. For this purpose, there are special constructors taking pointers to CvMat or IplImage and the optional flag
indicating whether to copy the data or not.

Backward conversion from Mat to CvMat or IplImage is provided via cast operators Mat: :operator
CvMat () const and Mat::operator IplImage(). The operators do NOT copy the data.

IplImage* img = cvLoadImage("greatwave.jpg", 1);

Mat mtx(img); // convert IplImage* -> Mat

CvMat oldmat = mtx; // convert Mat -> CvMat

CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
oldmat.data.ptr == (ucharx)img->imageData && oldmat.step == img->widthStep);

Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:

// create a double-precision identity martix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);

16

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

» Use a comma-separated initializer:

// create a 3x3 double-precision identity matrix
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 06, 1, 0, 0, 0, 1);

With this approach, you first call a constructor of the Mat_ class with the proper parameters, and then you just
put << operator followed by comma-separated values that can be constants, variables, expressions, and so on.
Also, note the extra parentheses required to avoid compilation errors.

Once the array is created, it is automatically managed via a reference-counting mechanism. If the array header is
built on top of user-allocated data, you should handle the data by yourself. The array data is deallocated when no
one points to it. If you want to release the data pointed by a array header before the array destructor is called, use
Mat::release() .

The next important thing to learn about the array class is element access. This manual already described how to
compute an address of each array element. Normally, you are not required to use the formula directly in the code. If
you know the array element type (which can be retrieved using the method Mat: : type()), you can access the element
M;; of a 2-dimensional array as:

M.at<double>(i,j) += 1.f;

assuming that M is a double-precision floating-point array. There are several variants of the method at for a different
number of dimensions.

If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to the row first, and then
just use the plain C operator [] :

// compute sum of positive matrix elements

// (assuming that M isa double-precision matrix)
double sum=0;

for(int i = 0; i < M.rows; i++)

{
const doublex Mi = M.ptr<double>(i);
for(int j = 0; j < M.cols; j++)
sum += std::max(Mi[j], 0.);
}

Some operations, like the one above, do not actually depend on the array shape. They just process elements of an
array one by one (or elements from multiple arrays that have the same coordinates, for example, array addition). Such
operations are called element-wise. It makes sense to check whether all the input/output arrays are continuous, namely,
have no gaps at the end of each row. If yes, process them as a long single row:

// compute the sum of positive matrix elements, optimized variant
double sum=0;

int cols = M.cols, rows = M.rows;

if(M.isContinuous())

{
cols *= rows;
rows = 1;
}
for(int i = 0; i < rows; i++)
{
const doublex Mi = M.ptr<double>(1i);
for(int j = 0; j < cols; j++)
sum += std::max(Mi[j], 0.);
}

In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is smaller, which is
especially noticeable in case of small matrices.

2.1. Basic Structures 17

The OpenCV Reference Manual, Release 2.3.3

Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:

// compute sum of positive matrix elements, iterator-based variant
double sum=0;
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(xit, 0.);

The matrix iterators are random-access iterators, so they can be passed to any STL algorithm, including std: :sort()

Matrix Expressions
This is a list of implemented matrix operations that can be combined in arbitrary complex expressions (here A, B stand
for matrices (Mat), s for a scalar (Scalar), alpha for a real-valued scalar (double)):

» Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A

* Scaling: Axalpha

* Per-element multiplication and division: A.mul(B), A/B, alpha/A

Matrix multiplication: A*B

Transposition: A.t() (means AT)
* Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:

A.inv([method]) (~A'), A.inv([method])*B (~X: AX=B)
e Comparison: A cmpop B, A cmpop alpha, alpha cmpop A, where cmpop is one of : >, >=, ==, !=,
<=, <. The result of comparison is an §-bit single channel mask whose elements are set to 255 (if the particular
element or pair of elements satisfy the condition) or 0.

Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A, where logicop is one of :
& |, ™

¢ Element-wise minimum and maximum: min(A, B), min(A, alpha), max(A, B), max(A, alpha)
¢ Element-wise absolute value: abs (A)
* Cross-product, dot-product: A.cross(B) A.dot(B)

* Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm, mean, sum,
countNonZero, trace, determinant, repeat, and others.

* Matrix initializers (Mat: :eye(), Mat::zeros(), Mat::ones()), matrix comma-separated initializers, ma-
trix constructors and operators that extract sub-matrices (see Mat description).

* Mat_<destination_type>() constructors to cast the result to the proper type.

Note: Comma-separated initializers and probably some other operations may require additional explicit Mat () or
Mat_<T>() constuctor calls to resolve a possible ambiguity.

Here are examples of matrix expressions:

// compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD)
SVD svd(A);
Mat pinvA = svd.vt.t()+Mat::diag(l./svd.w)*svd.u.t();

// compute the new vector of parameters in the Levenberg-Marquardt algorithm

18 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

X -=

(A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)x*(A.t()x*err);

// sharpen image using "unsharp mask" algorithm

Mat blurred; double sigma = 1, threshold = 5, amount = 1;
GaussianBlur(img, blurred, Size(), sigma, sigma);

Mat lowConstrastMask = abs(img - blurred) < threshold;
Mat sharpened = imgx*(l+amount) + blurred=(-amount);
img.copyTo(sharpened, lowContrastMask);

Below is the formal description of the Mat methods.

Mat::Mat

Various Mat constructors

C++:
C++:
C++:
C++:
C++:
C++:
C++:
C++:
C++:
C++:
C++:
C++:
C++:

C++:

C++:
C++:
C++:
C++:
C++:

C++:

Mat::Mat()
Mat: :Mat (int rows, int cols, int type)
Mat: :Mat(Size size, int type)
Mat: :Mat (int rows, int cols, int type, const Scalar& s)
Mat: :Mat(Size size, int type, const Scalar& s)
Mat: :Mat (const Mat& m)
Mat: :Mat (int rows, int cols, int type, void* data, size_t step=AUTO_STEP)
Mat: :Mat(Size size, int type, void* data, size_t step=AUTO_STEP)
Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange)
Mat: :Mat (const Mat& m, const Rect& roi)
Mat: :Mat(const CvMat* m, bool copyData=false)
Mat: :Mat (const Ipllmage* img, bool copyData=false)
template<typename T, int n> explicit Mat: :Mat (const Vec<T, n>& vec, bool copyData=true)

template<typename T, int m, int n> explicit Mat: :Mat (const Matx<T, m, n>& vec, bool copy-
Data=true)

template<typename T> explicit Mat: :Mat (const vector<T>& vec, bool copyData=false)
Mat: :Mat (const MatExpr& expr)
Mat: :Mat (int ndims, const int* sizes, int type)
Mat::Mat (int ndims, const int* sizes, int type, const Scalar& s)
Mat: :Mat (int ndims, const int* sizes, int type, void* data, const size_t* steps=0)
Mat: :Mat(const Mat& m, const Range* ranges)
Parameters
ndims — Array dimensionality.
rows — Number of rows in a 2D array.
cols — Number of columns in a 2D array.

size — 2D array size: Size(cols, rows) . Inthe Size() constructor, the number of rows
and the number of columns go in the reverse order.

2.1. Basic Structures

19

The OpenCV Reference Manual, Release 2.3.3

sizes — Array of integers specifying an n-dimensional array shape.

type — Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
cv_8uC(n), ..., CV_64FC(n) to create multi-channel (up to CV_MAX_CN channels) ma-
trices.

s — An optional value to initialize each matrix element with. To set all the ma-
trix elements to the particular value after the construction, use the assignment operator
Mat::operator=(const Scalar& value) .

data — Pointer to the user data. Matrix constructors that take data and step parameters
do not allocate matrix data. Instead, they just initialize the matrix header that points to
the specified data, which means that no data is copied. This operation is very efficient and
can be used to process external data using OpenCV functions. The external data is not
automatically deallocated, so you should take care of it.

step — Number of bytes each matrix row occupies. The value should include the padding
bytes at the end of each row, if any. If the parameter is missing (set to AUTO_STEP
), no padding is assumed and the actual step is calculated as colsxelemSize() . See
Mat::elemSize() .

steps — Array of ndims -1 steps in case of a multi-dimensional array (the last step is always
set to the element size). If not specified, the matrix is assumed to be continuous.

m — Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
by these constructors. Instead, the header pointing to m data or its sub-array is constructed
and associated with it. The reference counter, if any, is incremented. So, when you modify
the matrix formed using such a constructor, you also modify the corresponding elements of
m . If you want to have an independent copy of the sub-array, use Mat: :clone() .

img — Pointer to the old-style IplImage image structure. By default, the data is shared
between the original image and the new matrix. But when copyData is set, the full copy of
the image data is created.

vec — STL vector whose elements form the matrix. The matrix has a single column and the
number of rows equal to the number of vector elements. Type of the matrix matches the type
of vector elements. The constructor can handle arbitrary types, for which there is a properly
declared DataType . This means that the vector elements must be primitive numbers or
uni-type numerical tuples of numbers. Mixed-type structures are not supported. The corre-
sponding constructor is explicit. Since STL vectors are not automatically converted to Mat
instances, you should write Mat (vec) explicitly. Unless you copy the data into the matrix
(copyData=true), no new elements will be added to the vector because it can potentially
yield vector data reallocation, and, thus, the matrix data pointer will be invalid.

copyData — Flag to specify whether the underlying data of the STL vector or the old-style
CvMat or IplImage should be copied to (true) or shared with (false) the newly con-
structed matrix. When the data is copied, the allocated buffer is managed using Mat refer-
ence counting mechanism. While the data is shared, the reference counter is NULL, and
you should not deallocate the data until the matrix is not destructed.

rowRange — Range of the m rows to take. As usual, the range start is inclusive and the range
end is exclusive. Use Range: :all() to take all the rows.

colRange — Range of the m columns to take. Use Range: :all() to take all the columns.
ranges — Array of selected ranges of m along each dimensionality.
expr — Matrix expression. See Matrix Expressions.

These are various constructors that form a matrix. As noted in the Automatic Allocation of the Output Data, often
the default constructor is enough, and the proper matrix will be allocated by an OpenCV function. The constructed

20 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

matrix can further be assigned to another matrix or matrix expression or can be allocated with Mat: :create() . In
the former case, the old content is de-referenced.

Mat::~Mat

The Mat destructor.
C++: Mat::~Mat()

The matrix destructor calls Mat: : release() .

Mat::operator =

Provides matrix assignment operators.

C++: Mat& Mat: :operator=(const Mat& m)

C++: Mat& Mat: :operator=(const MatExpr_Base& expr)

C++: Mat& Mat: :operator=(const Scalar& s)
Parameters

m — Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means
that no data is copied but the data is shared and the reference counter, if any, is incremented.
Before assigning new data, the old data is de-referenced via Mat: : release() .

expr — Assigned matrix expression object. As opposite to the first form of the assignment
operation, the second form can reuse already allocated matrix if it has the right size and type
to fit the matrix expression result. It is automatically handled by the real function that the
matrix expressions is expanded to. For example, C=A+B is expanded to add (A, B, C),and
add () takes care of automatic C reallocation.

s — Scalar assigned to each matrix element. The matrix size or type is not changed.

These are available assignment operators. Since they all are very different, make sure to read the operator parameters
description.

Mat::operator MatExpr

Provides a Mat -to- MatExpr cast operator.
C++: Mat::operator MatExpr_<Mat, Mat>() const

The cast operator should not be called explicitly. It is used internally by the Matrix Expressions engine.

Mat::row

Creates a matrix header for the specified matrix row.
C++: MatMat::row(inti) const
Parameters

i — A 0-based row index.

2.1. Basic Structures 21

The OpenCV Reference Manual, Release 2.3.3

The method makes a new header for the specified matrix row and returns it. This is an O(1) operation, regardless of
the matrix size. The underlying data of the new matrix is shared with the original matrix. Here is the example of one
of the classical basic matrix processing operations, axpy, used by LU and many other algorithms:

inline void matrix_axpy(Mat& A, int i, int j, double alpha)
{

A.row(i) += A.row(j)=*alpha;

}

Note: In the current implementation, the following code does not work as expected:

Mat A;
A.row(i) = A.row(j); // will not work

This happens because A. row(i) forms a temporary header that is further assigned to another header. Remember that
each of these operations is O(1), that is, no data is copied. Thus, the above assignment is not true if you may have
expected the j-th row to be copied to the i-th row. To achieve that, you should either turn this simple assignment into
an expression or use the Mat: : copyTo () method:

Mat A;

// works, but looks a bit obscure.
A.row(i) = A.row(j) + 0;

// this is a bit longe, but the recommended method.
A.row(j).copyTo(A.row(i));

Mat::col

Creates a matrix header for the specified matrix column.
C++: MatMat::col(intj) const
Parameters
Jj — A O-based column index.

The method makes a new header for the specified matrix column and returns it. This is an O(1) operation, regardless
of the matrix size. The underlying data of the new matrix is shared with the original matrix. See also the Mat: : row()
description.

Mat::rowRange

Creates a matrix header for the specified row span.
C++: Mat Mat: : rowRange (int startrow, int endrow) const
C++: Mat Mat: : rowRange (const Range& r) const
Parameters
startrow — An inclusive 0-based start index of the row span.
endrow — An exclusive 0-based ending index of the row span.

r — Range structure containing both the start and the end indices.

22 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

The method makes a new header for the specified row span of the matrix. Similarly to Mat: : row() and Mat::col()

, this is an O(1) operation.

Mat::colRange

Creates a matrix header for the specified row span.
C++: Mat Mat: : colRange (int startcol, int endcol) const
C++: Mat Mat: : colRange(const Range& r) const
Parameters
startcol — An inclusive 0-based start index of the column span.
endcol — An exclusive 0-based ending index of the column span.
r — Range structure containing both the start and the end indices.

The method makes a new header for the specified column span of the matrix. Similarly to Mat
Mat::col() , thisis an O(1) operation.

Mat::diag

Extracts a diagonal from a matrix, or creates a diagonal matrix.
C++: Mat Mat::diag(intd) const
C++: static Mat Mat: :diag(const Mat& matD)
Parameters
d — Index of the diagonal, with the following values:

— d=0 is the main diagonal.

::row() and

— d>0 is a diagonal from the lower half. For example, d=1 means the diagonal is set imme-

diately below the main one.

— d<0 is a diagonal from the upper half. For example, d=1 means the diagonal is set imme-

diately above the main one.

matD — Single-column matrix that forms a diagonal matrix.

The method makes a new header for the specified matrix diagonal. The new matrix is represented as a single-column

matrix. Similarly to Mat: :row() and Mat::col() , this is an O(1) operation.

Mat::clone

Creates a full copy of the array and the underlying data.

C++: MatMat::clone() const

The method creates a full copy of the array. The original step[] is not taken into account. So, the array copy is a

continuous array occupying total()*elemSize() bytes.

2.1. Basic Structures

23

The OpenCV Reference Manual, Release 2.3.3

Mat::copyTo

Copies the matrix to another one.

C++: void Mat: : copyTo (OutputArray m) const

C++: void Mat: : copyTo (OutputArray m, InputArray mask) const
Parameters

m — Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.

mask — Operation mask. Its non-zero elements indicate which matrix elements need to be
copied.

The method copies the matrix data to another matrix. Before copying the data, the method invokes
m.create(this->size(), this->type);

so that the destination matrix is reallocated if needed. While m. copyTo(m); works flawlessly, the function does not
handle the case of a partial overlap between the source and the destination matrices.

When the operation mask is specified, and the Mat: :create call shown above reallocated the matrix, the newly
allocated matrix is initialized with all zeros before copying the data.

Mat::converiTo

Converts an array to another datatype with optional scaling.
C++: void Mat: : convertTo (OutputArray m, int rtype, double alpha=1, double beta=0) const
Parameters

m — Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.

rtype — Desired destination matrix type or, rather, the depth since the number of channels
are the same as the source has. If rtype is negative, the destination matrix will have the
same type as the source.

alpha — Optional scale factor.
beta — Optional delta added to the scaled values.

The method converts source pixel values to the target datatype. saturate_cast<> is applied at the end to avoid
possible overflows:

m(x,y) = saturate_cast < rType > (x(xthis)(x,y) + B)

Mat::assignTo

Provides a functional form of convertTo.
C++: void Mat: :assignTo(Mat& m, int type=-1) const
Parameters
m — Destination array.
type — Desired destination array depth (or -1 if it should be the same as the source type).

This is an internally used method called by the Matrix Expressions engine.

24 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Mat::setTo

Sets all or some of the array elements to the specified value.
C++: Mat& Mat: :setTo(const Scalar& s, InputArray mask=noArray())
Parameters
s — Assigned scalar converted to the actual array type.

mask — Operation mask of the same size as xthis. This is an advanced variant of the
Mat::operator=(const Scalar& s) operator.

Mat::reshape

Changes the shape and/or the number of channels of a 2D matrix without copying the data.
C++: Mat Mat: : reshape (int cn, int rows=0) const
Parameters

cn — New number of channels. If the parameter is 0, the number of channels remains the
same.

rows — New number of rows. If the parameter is 0, the number of rows remains the same.

The method makes a new matrix header for *this elements. The new matrix may have a different size and/or different
number of channels. Any combination is possible if:

* No extra elements are included into the new matrix and no elements are excluded. Consequently, the product
rowsxcols*channels () must stay the same after the transformation.

* No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of rows, or
the operation changes the indices of elements row in some other way, the matrix must be continuous. See
Mat::isContinuous() .

For example, if there is a set of 3D points stored as an STL vector, and you want to represent the points as a 3xN
matrix, do the following:

std::vector<Point3f> vec;

Mat pointMat = Mat(vec). // convert vector to Mat, 0(1) operation
reshape(1l). // make Nx3 1-channel matrix out of Nx1 3-channel.
// Also, an 0(1) operation
t(); // finally, transpose the Nx3 matrix.
// This involves copying all the elements

Mat::t

Transposes a matrix.
C++: MatExpr Mat::t() const

The method performs matrix transposition by means of matrix expressions. It does not perform the actual transpo-
sition but returns a temporary matrix transposition object that can be further used as a part of more complex matrix
expressions or can be assigned to a matrix:

Mat Al = A + Mat::eye(A.size(), A.type)+lambda;
Mat C = Al.t()*Al; // compute (A + lambdaxI)"~t * (A + lamdaxI)

2.1. Basic Structures 25

The OpenCV Reference Manual, Release 2.3.3

Mat::inv

Inverses a matrix.
C++: MatExpr Mat: : inv (int method=DECOMP_LU) const
Parameters
method — Matrix inversion method. Possible values are the following:
— DECOMP_LU is the LU decomposition. The matrix must be non-singular.

- DECOMP_CHOLESKY is the Cholesky LLT decomposition for symmetrical positively
defined matrices only. This type is about twice faster than LU on big matrices.

— DECOMP_SVD is the SVD decomposition. If the matrix is singular or even non-square,
the pseudo inversion is computed.

The method performs a matrix inversion by means of matrix expressions. This means that a temporary matrix inversion
object is returned by the method and can be used further as a part of more complex matrix expressions or can be
assigned to a matrix.

Mat::mul

Performs an element-wise multiplication or division of the two matrices.
C++: MatExpr Mat: :mul (InputArray m, double scale=1) const
Parameters
m — Another array of the same type and the same size as *this, or a matrix expression.
scale — Optional scale factor.

The method returns a temporary object encoding per-element array multiplication, with optional scale. Note that this
is not a matrix multiplication that corresponds to a simpler “*” operator.

Example:

Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)

Mat::cross

Computes a cross-product of two 3-element vectors.
C++: Mat Mat: :cross(InputArray m) const
Parameters
m — Another cross-product operand.

The method computes a cross-product of two 3-element vectors. The vectors must be 3-element floating-point vectors
of the same shape and size. The result is another 3-element vector of the same shape and type as operands.

Mat::dot

Computes a dot-product of two vectors.
C++: double Mat: :dot (InputArray m) const

Parameters

26 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

m — Another dot-product operand.

The method computes a dot-product of two matrices. If the matrices are not single-column or single-row vectors, the
top-to-bottom left-to-right scan ordering is used to treat them as 1D vectors. The vectors must have the same size and
type. If the matrices have more than one channel, the dot products from all the channels are summed together.

Mat::zeros

Returns a zero array of the specified size and type.

C++: static MatExpr Mat : : zeros (int rows, int cols, int type)

C++: static MatExpr Mat : : zeros (Size size, int type)

C++: static MatExpr Mat : : zeros (int ndims, const int* sizes, int type)

Parameters

ndims — Array dimensionality.
rows — Number of rows.
cols — Number of columns.
size — Alternative to the matrix size specification Size(cols, rows) .
sizes — Array of integers specifying the array shape.
type — Created matrix type.

The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant array as a function
parameter, part of a matrix expression, or as a matrix initializer.

Mat A;
A = Mat::zeros(3, 3, CV_32F);

In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix. Otherwise, the existing
matrix A is filled with zeros.

Mat::ones

Returns an array of all 1’s of the specified size and type.
C++: static MatExpr Mat: : ones (int rows, int cols, int type)
C++: static MatExpr Mat : : ones (Size size, int type)
C++: static MatExpr Mat : : ones (int ndims, const int* sizes, int type)
Parameters
ndims — Array dimensionality.
rows — Number of rows.
cols — Number of columns.
size — Alternative to the matrix size specification Size(cols, rows) .
sizes — Array of integers specifying the array shape.

type — Created matrix type.

2.1. Basic Structures 27

The OpenCV Reference Manual, Release 2.3.3

The method returns a Matlab-style 1’s array initializer, similarly to Mat: : zeros (). Note that using this method you
can initialize an array with an arbitrary value, using the following Matlab idiom:

Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.

The above operation does not form a 100x100 matrix of 1’s and then multiply it by 3. Instead, it just remembers the
scale factor (3 in this case) and use it when actually invoking the matrix initializer.

Mat::eye

Returns an identity matrix of the specified size and type.
C++: static MatExpr Mat : : eye (int rows, int cols, int type)
C++: static MatExpr Mat : : eye(Size size, int type)
Parameters
rows — Number of rows.
cols — Number of columns.
size — Alternative matrix size specification as Size(cols, rows) .
type — Created matrix type.

The method returns a Matlab-style identity matrix initializer, similarly to Mat: : zeros (). Similarly to Mat: :ones(),
you can use a scale operation to create a scaled identity matrix efficiently:

// make a 4x4 diagonal matrix with 0.1’s on the diagonal.
Mat A = Mat::eye(4, 4, CV_32F)x0.1;

Mat::create

Allocates new array data if needed.

C++: void Mat: : create (int rows, int cols, int type)

C++: void Mat: : create(Size size, int type)

C++: void Mat: : create (int ndims, const int* sizes, int type)

Parameters

ndims — New array dimensionality.
rows — New number of rows.
cols — New number of columns.
size — Alternative new matrix size specification: Size(cols, rows)
sizes — Array of integers specifying a new array shape.
type — New matrix type.

This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays call this
method for each output array. The method uses the following algorithm:

1. If the current array shape and the type match the new ones, return immediately. Otherwise, de-reference the
previous data by calling Mat: : release().

2. Initialize the new header.

28 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

3. Allocate the new data of total()*elemSize() bytes.
4. Allocate the new, associated with the data, reference counter and set it to 1.

Such a scheme makes the memory management robust and efficient at the same time and helps avoid extra typing for
you. This means that usually there is no need to explicitly allocate output arrays. That is, instead of writing:

Mat color;

Mat gray(color.rows, color.cols, color.depth());
cvtColor(color, gray, CV_BGR2GRAY);

you can simply write:

Mat color;

Mat gray;

cvtColor(color, gray, CV_BGR2GRAY);

because cvtColor, as well as the most of OpenCV functions, calls Mat: : create() for the output array internally.

Mat::addref

Increments the reference counter.
C++: void Mat: :addref ()

The method increments the reference counter associated with the matrix data. If the matrix header points to an external
data set (see Mat: :Mat()), the reference counter is NULL, and the method has no effect in this case. Normally, to
avoid memory leaks, the method should not be called explicitly. It is called implicitly by the matrix assignment
operator. The reference counter increment is an atomic operation on the platforms that support it. Thus, it is safe to
operate on the same matrices asynchronously in different threads.

Mat::release

Decrements the reference counter and deallocates the matrix if needed.
C++: void Mat: :release()

The method decrements the reference counter associated with the matrix data. When the reference counter reaches 0,
the matrix data is deallocated and the data and the reference counter pointers are set to NULL’s. If the matrix header
points to an external data set (see Mat: :Mat ()), the reference counter is NULL, and the method has no effect in this
case.

This method can be called manually to force the matrix data deallocation. But since this method is automatically
called in the destructor, or by any other method that changes the data pointer, it is usually not needed. The reference
counter decrement and check for O is an atomic operation on the platforms that support it. Thus, it is safe to operate
on the same matrices asynchronously in different threads.

Mat::resize

Changes the number of matrix rows.
C++: void Mat: :resize(size_t sz)
C++: void Mat: :resize(size_t sz, const Scalar& s)

Parameters

2.1. Basic Structures 29

The OpenCV Reference Manual, Release 2.3.3

sz — New number of rows.
s — Value assigned to the newly added elements.

The methods change the number of matrix rows. If the matrix is reallocated, the first min(Mat: : rows, sz) rows are
preserved. The methods emulate the corresponding methods of the STL vector class.

Mat::reserve

Reserves space for the certain number of rows.
C++: void Mat: : reserve(size_t sz)
Parameters
sz — Number of rows.

The method reserves space for sz rows. If the matrix already has enough space to store sz rows, nothing happens. If
the matrix is reallocated, the first Mat: : rows rows are preserved. The method emulates the corresponding method of
the STL vector class.

Mat::push_back

Adds elements to the bottom of the matrix.
C++: template<typename T> void Mat : : push_back (const T& elem)
C++: void Mat: : push_back(const Mat& elem)
Parameters
elem — Added element(s).

The methods add one or more elements to the bottom of the matrix. They emulate the corresponding method of the
STL vector class. When elemis Mat , its type and the number of columns must be the same as in the container matrix.

Mat::pop_back

Removes elements from the bottom of the matrix.
C++: template<typename T> void Mat : : pop_back (size_t nelems=1)
Parameters

nelems — Number of removed rows. If it is greater than the total number of rows, an excep-
tion is thrown.

The method removes one or more rows from the bottom of the matrix.

Mat::locateROI

Locates the matrix header within a parent matrix.
C++: void Mat: :locateROI (Size& wholeSize, Point& ofs) const
Parameters

wholeSize — Output parameter that contains the size of the whole matrix containing *this
is a part.

30 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

ofs — Output parameter that contains an offset of *this inside the whole matrix.

After you extracted a submatrix from a matrix using Mat::row(), Mat::col(), Mat::rowRange(),
Mat::colRange() , and others, the resultant submatrix points just to the part of the original big matrix. However,
each submatrix contains information (represented by datastart and dataend fields) that helps reconstruct the orig-
inal matrix size and the position of the extracted submatrix within the original matrix. The method locateR0I does
exactly that.

Mat::adjustROI

Adjusts a submatrix size and position within the parent matrix.
C++: Mat& Mat: :adjustROI (int dtop, int dbottom, int dleft, int dright)
Parameters
dtop — Shift of the top submatrix boundary upwards.
dbottom — Shift of the bottom submatrix boundary downwards.
dleft — Shift of the left submatrix boundary to the left.
dright — Shift of the right submatrix boundary to the right.

The method is complimentary to Mat: : LocateROI () . The typical use of these functions is to determine the submatrix
position within the parent matrix and then shift the position somehow. Typically, it can be required for filtering
operations when pixels outside of the ROI should be taken into account. When all the method parameters are positive,
the ROI needs to grow in all directions by the specified amount, for example:

A.adjustROI(2, 2, 2, 2);
In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted by 2 elements to the
left and 2 elements up, which brings in all the necessary pixels for the filtering with the 5x5 kernel.

It is your responsibility to make sure adjustROI does not cross the parent matrix boundary. If it does, the function
signals an error.

The function is used internally by the OpenCV filtering functions, like filter2D() , morphological operations, and
SO on.

See Also:
copyMakeBorder()

Mat::operator()

Extracts a rectangular submatrix.
C++: Mat Mat: :operator() (Range rowRange, Range colRange) const
C++: Mat Mat: :operator() (const Rect& roi) const
C++: Mat Mat: :operator() (const Ranges* ranges) const
Parameters

rowRange — Start and end row of the extracted submatrix. The upper boundary is not
included. To select all the rows, use Range: :all().

colRange — Start and end column of the extracted submatrix. The upper boundary is not
included. To select all the columns, use Range: :all().

2.1. Basic Structures 31

The OpenCV Reference Manual, Release 2.3.3

roi — Extracted submatrix specified as a rectangle.
ranges — Array of selected ranges along each array dimension.

The operators make a new header for the specified sub-array of *this . They are the most generalized forms
of Mat::row(), Mat::col(), Mat::rowRange(), and Mat::colRange() . For example, A(Range(0, 10),
Range::all()) is equivalent to A.rowRange (0, 10) . Similarly to all of the above, the operators are O(1) oper-
ations, that is, no matrix data is copied.

Mat::operator CvMat

Creates the CvMat header for the matrix.
C++: Mat::operator CvMat() const

The operator creates the CvMat header for the matrix without copying the underlying data. The reference counter is
not taken into account by this operation. Thus, you should make sure than the original matrix is not deallocated while
the CvMat header is used. The operator is useful for intermixing the new and the old OpenCV APT’s, for example:

Mat img(Size(320, 240), CV_8UC3);

CvMat cvimg = img;
mycvOldFunc(&cvimg, ...);

where mycvOldFunc is a function written to work with OpenCV 1.x data structures.

Mat::operator Iplimage

Creates the IplImage header for the matrix.
C++: Mat::operator Ipllmage() const

The operator creates the IplImage header for the matrix without copying the underlying data. You should make sure
than the original matrix is not deallocated while the IplImage header is used. Similarly to Mat: :operator CvMat,
the operator is useful for intermixing the new and the old OpenCV APT’s.

Mat::total

Returns the total number of array elements.
C++: size_tMat::total() const

The method returns the number of array elements (a number of pixels if the array represents an image).

Mat::isContinuous

Reports whether the matrix is continuous or not.
C++: bool Mat::isContinuous() const

The method returns true if the matrix elements are stored continuously without gaps at the end of each row. Otherwise,
it returns false. Obviously, 1x1 or 1xN matrices are always continuous. Matrices created with Mat::create() are
always continuous. But if you extract a part of the matrix using Mat: :col(),Mat::diag() , and so on, or constructed
a matrix header for externally allocated data, such matrices may no longer have this property.

32 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

The continuity flag is stored as a bit in the Mat: : flags field and is computed automatically when you construct a
matrix header. Thus, the continuity check is a very fast operation, though theoretically it could be done as follows:

// alternative implementation of Mat::isContinuous()
bool myCheckMatContinuity(const Mat& m)

{
//return (m.flags & Mat::CONTINUOUS_FLAG) != 0;
return m.rows == 1 || m.step == m.cols*m.elemSize();

}

The method is used in quite a few of OpenCV functions. The point is that element-wise operations (such as arithmetic
and logical operations, math functions, alpha blending, color space transformations, and others) do not depend on the
image geometry. Thus, if all the input and output arrays are continuous, the functions can process them as very long
single-row vectors. The example below illustrates how an alpha-blending function can be implemented.

template<typename T>
void alphaBlendRGBA(const Mat& srcl, const Mat& src2, Mat& dst)

{
const float alpha_scale = (float)std::numeric_limits<T>::max(),
inv_scale = 1.f/alpha_scale;
CV_Assert(srcl.type() == src2.type() &&
srcl.type() == CV_MAKETYPE(DataType<T>::depth, 4) &&
srcl.size() == src2.size());
Size size = srcl.size();
dst.create(size, srcl.type());
// here is the idiom: check the arrays for continuity and,
// 1if this is the case,
// treat the arrays as 1D vectors
if(srcl.isContinuous() && src2.isContinuous() && dst.isContinuous())
{
size.width *= size.height;
size.height = 1;
}
size.width *= 4;
for(int i = 0; i < size.height; i++)
{
// when the arrays are continuous,
// the outer loop is executed only once
const Tx ptrl = srcl.ptr<T>(1i);
const Tx ptr2 = src2.ptr<T>(1i);
T+ dptr = dst.ptr<T>(1i);
for(int j = 0; j < size.width; j += 4)
{
float alpha = ptrl[j+3]*inv_scale, beta = ptr2[j+3]+inv_scale;
dptr[j] = saturate_cast<T>(ptrl[jl*alpha + ptr2[j]l*beta);
dptr[j+1] = saturate_cast<T>(ptrl[j+1]+alpha + ptr2[j+1]xbeta);
dptr[j+2] = saturate_cast<T>(ptrl[j+2]=*alpha + ptr2[j+2]*beta);
dptr[j+3] = saturate_cast<T>((1 - (l-alpha)=*(1l-beta))=*alpha_scale);
}
}
}

This approach, while being very simple, can boost the performance of a simple element-operation by 10-20 percents,
especially if the image is rather small and the operation is quite simple.

2.1. Basic Structures 33

The OpenCV Reference Manual, Release 2.3.3

Another OpenCV idiom in this function, a call of Mat: : create() for the destination array, that allocates the destina-
tion array unless it already has the proper size and type. And while the newly allocated arrays are always continuous,
you still need to check the destination array because Mat: : create() does not always allocate a new matrix.

Mat::elemSize

Returns the matrix element size in bytes.
C++: size_tMat::elemSize() const

The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 , the method returns
3xsizeof(short) or 6.

Mat::elemSize1

Returns the size of each matrix element channel in bytes.
C++: size_tMat::elemSizel() const

The method returns the matrix element channel size in bytes, that is, it ignores the number of channels. For example,
if the matrix type is CV_16SC3 , the method returns sizeof (short) or 2.

Mat::type

Returns the type of a matrix element.
C++: intMat::type() const

The method returns a matrix element type. This is an identifier compatible with the CvMat type system, like CV_165SC3
or 16-bit signed 3-channel array, and so on.

Mat::depth

Returns the depth of a matrix element.
C++: intMat::depth() const

The method returns the identifier of the matrix element depth (the type of each individual channel). For example, for
a 16-bit signed 3-channel array, the method returns CV_16S . A complete list of matrix types contains the following
values:

e CV_8U - 8-bit unsigned integers (0. .255)

* CV_8S - 8-bit signed integers (-128..127)

e CV_16U - 16-bit unsigned integers (0. .65535)

e CV_16S - 16-bit signed integers (-32768..32767)

* CV_32S - 32-bit signed integers (-2147483648. .2147483647)

e CV_32F - 32-bit floating-point numbers (-FLT_MAX..FLT_MAX, INF, NAN)
* CV_64F - 64-bit floating-point numbers (-DBL_MAX. .DBL_MAX, INF, NAN)

34 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Mat::channels

Returns the number of matrix channels.
C++: intMat::channels() const

The method returns the number of matrix channels.

Mat::step1

Returns a normalized step.
C++: size_tMat::stepl() const

The method returns a matrix step divided by Mat::elemSizel() . It can be useful to quickly access an arbitrary
matrix element.

Mat::size

Returns a matrix size.
C++: Size Mat::size() const

The method returns a matrix size: Size(cols, rows) . When the matrix is more than 2-dimensional, the returned
size is (-1, -1).

Mat::empty

Returns true if the array has no elemens.
C++: bool Mat: :empty() const

The method returns true if Mat::total() is O or if Mat: :data is NULL. Because of pop_back() and resize()
methods M. total() == 0 does not imply that M.data == NULL.

Mat::ptr

Returns a pointer to the specified matrix row.
C++: uchar* Mat: :ptr(inti=0)
C++: const uchar* Mat::ptr(inti=0) const
C++: template<typename _Tp> _Tp* Mat: :ptr(inti=0)
C++: template<typename _Tp> const _Tp* Mat: :ptr(inti=0) const
Parameters
i— A 0-based row index.

The methods return uchar* or typed pointer to the specified matrix row. See the sample in Mat: : isContinuous() to
know how to use these methods.

2.1. Basic Structures 35

The OpenCV Reference Manual, Release 2.3.3

Mat::at

Returns a reference to the specified array element.
C++: template<typename T> T& Mat::at(inti) const
C++: template<typename T> const T& Mat: :at(inti) const
C++: template<typename T> T& Mat: :at (inti, int j)
C++: template<typename T> const T& Mat: :at(inti, intj) const
C++: template<typename T> T& Mat : : at (Point pt)
C++: template<typename T> const T& Mat: :at (Point pt) const
C++: template<typename T> T& Mat: :at(inti, int j, int k)
C++: template<typename T> const T& Mat: :at(inti, int j, int k) const
C++: template<typename T> T& Mat: :at(const int* idx)
C++: template<typename T> const T& Mat: :at (const int* idx) const
Parameters
i — Index along the dimension 0
Jj — Index along the dimension 1
k — Index along the dimension 2
pt — Element position specified as Point (j,1) .
idx — Array of Mat: :dims indices.

The template methods return a reference to the specified array element. For the sake of higher performance, the index
range checks are only performed in the Debug configuration.

Note that the variants with a single index (i) can be used to access elements of single-row or single-column
2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and B is an M x 1 integer
matrix, you can simply write A.at<float>(k+4) and B.at<int>(2*i+1) instead of A.at<float>(0,k+4) and
B.at<int>(2xi+1,0) , respectively.

The example below initializes a Hilbert matrix:

Mat H(100, 100, CV_64F);
for(int i = 0; i < H.rows; i++)
for(int j = 0; j < H.cols; j++)
H.at<double>(1i,j)=1./(i+j+1);

Mat::begin

Returns the matrix iterator and sets it to the first matrix element.
C++: template<typename _Tp> Matlterator_<_Tp> Mat: :begin()
C++: template<typename _Tp> MatConstlterator_<_Tp>Mat: :begin() const

The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very similar to the use of
bi-directional STL iterators. In the example below, the alpha blending function is rewritten using the matrix iterators:

36 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

template<typename T>
void alphaBlendRGBA(const Mat& srcl, const Mat& src2, Mat& dst)

{
typedef Vec<T, 4> VT;
const float alpha_scale = (float)std::numeric_limits<T>::max(),
inv_scale = 1.f/alpha_scale;
CV_Assert(srcl.type() == src2.type() &&
srcl.type() == DataType<VT>::type &&
srcl.size() == src2.size());
Size size = srcl.size();
dst.create(size, srcl.type());
MatConstIterator_<VT> itl = srcl.begin<VT>(), itl_end = srcl.end<VT>();
MatConstIterator_<VT> it2 = src2.begin<VT>();
MatIterator_<VT> dst_it = dst.begin<VT>();
for(; itl !'= itl_end; ++itl, ++it2, ++dst_it)
{
VT pix1l = *itl, pix2 = *it2;
float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale;
*dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta),
saturate_cast<T>(pix1[1l]+alpha + pix2[1l]xbeta),
saturate_cast<T>(pix1[2]+alpha + pix2[2]xbeta),
saturate_cast<T>((1 - (l-alpha)=*(1l-beta))=*alpha_scale));
}
}
Mat::end

Returns the matrix iterator and sets it to the after-last matrix element.
C++: template<typename _Tp> Matlterator_<_Tp>Mat: :end()
C++: template<typename _Tp> MatConstlterator_<_Tp>Mat::end() const

The methods return the matrix read-only or read-write iterators, set to the point following the last matrix element.

Mat_

class Mat_
Template matrix class derived from Mat .

template<typename _Tp> class Mat_ : public Mat

{

public:
// ... some specific methods
// and
// no new extra fields

b

The class Mat_<_Tp> is a “thin” template wrapper on top of the Mat class. It does not have any extra data fields. Nor
this class nor Mat has any virtual methods. Thus, references or pointers to these two classes can be freely but carefully
converted one to another. For example:

2.1. Basic Structures 37

The OpenCV Reference Manual, Release 2.3.3

// create a 100x100 8-bit matrix

Mat M(100,100,CV_8U);

// this will be compiled fine. no any data conversion will be done.
Mat_<float>& M1 = (Mat_<float>&)M;

// the program is likely to crash at the statement below

M1(99,99) = 1.f;

While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element access op-
erations and if you know matrix type at the compilation time. Note that Mat::at<_Tp>(int y, int x) and
Mat_<_Tp>::operator ()(int y, int x) do absolutely the same and run at the same speed, but the latter is cer-
tainly shorter:

Mat_<double> M(20,20);
for(int i = 0; i < M.rows; i++)
for(int j = 0; j < M.cols; j++)
M(i,j) = 1./(i+j+1);
Mat E, V;
eigen(M,E,V);
cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);

To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:

// allocate a 320x240 color image and fill it with green (in RGB space)
Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
// now draw a diagonal white line
for(int i = 0; i < 100; i++)

img(i,i)=Vec3b(255,255,255);
// and now scramble the 2nd (red) channel of each pixel
for(int i = 0; i < img.rows; i++)

for(int j = 0; j < img.cols; j++)

img(i,j)[2]1 = (uchar)(i ~ j);

NAryMatlterator

class NAryMatIterator
n-ary multi-dimensional array iterator.

class CV_EXPORTS NAryMatIterator

{

public:
//! the default constructor
NAryMatIterator();
//! the full constructor taking arbitrary number of n-dim matrices
NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
//! the separate iterator initialization method
void init(const Matx* arrays, Mat+ planes, int narrays=-1);
//! proceeds to the next plane of every iterated matrix
NAryMatIterator& operator ++();
//! proceeds to the next plane of every iterated matrix (postfix increment operator)
NAryMatIterator operator ++(int);
int nplanes; // the total number of planes

+i

38 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Use the class to implement unary, binary, and, generally, n-ary element-wise operations on multi-dimensional arrays.
Some of the arguments of an n-ary function may be continuous arrays, some may be not. It is possible to use con-
ventional MatIterator ‘s for each array but incrementing all of the iterators after each small operations may be a
big overhead. In this case consider using NAryMatIterator to iterate through several matrices simultaneously as
long as they have the same geometry (dimensionality and all the dimension sizes are the same). On each iteration
it.planes[0], it.planes[1], ... will be the slices of the corresponding matrices.

The example below illustrates how you can compute a normalized and threshold 3D color histogram:

void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb)

{
const int histSize[] = {N, N, N};

// make sure that the histogram has a proper size and type
hist.create(3, histSize, CV_32F);

// and clear it
hist = Scalar(0);

// the loop below assumes that the image
// 1s a 8-bit 3-channel. check it.
CV_Assert(image.type() == CV_8UC3);
MatConstIterator_<Vec3b> it = image.begin<Vec3b>(),
it_end = image.end<Vec3b>();

for(; it !'= it_end; ++it)
{

const Vec3b& pix = *it;

hist.at<float>(pix[0]*N/256, pix[1]*N/256, pix[2]1*N/256) += 1.f;

}

minProb *= image.rows+image.cols;

Mat plane;

NAryMatIterator it(&hist, &plane, 1);
double s = 0;

// iterate through the matrix. on each iteration
// it.planes[*] (of type Mat) will be set to the current plane.
for(int p = 0; p < it.nplanes; p++, ++it)

{
threshold(it.planes[0], it.planes[0], minProb, ©, THRESH_TOZERO);
s += sum(it.planes[0])[0];

}

s =1./s;

it = NAryMatIterator(&hist, &plane, 1);
for(int p = 0; p < it.nplanes; p++, ++it)
it.planes[0] *= s;

SparseMat

class SparseMat
Sparse n-dimensional array.

class SparseMat
{
public:
typedef SparseMatIterator iterator;

2.1. Basic Structures 39

The OpenCV Reference Manual, Release 2.3.3

typedef SparseMatConstIterator const_iterator;

// internal structure - sparse matrix header
struct Hdr
{

+

// sparse matrix node - element of a hash table
struct Node

{
size_t hashval;
size_t next;
int idx[CV_MAX_DIM];
+;

////////// constructors and destructor //////////

// default constructor

SparseMat();

// creates matrix of the specified size and type
SparseMat(int dims, const intx _sizes, int _type);

// copy constructor

SparseMat(const SparseMat& m);

// converts dense array to the sparse form,

// if tryld is true and matrix is a single-column matrix (Nx1),
// then the sparse matrix will be 1-dimensional.
SparseMat(const Mat& m, bool tryld=false);

// converts an old-style sparse matrix to the new style.
// all the data is copied so that "m" can be safely

// deleted after the conversion

SparseMat(const CvSparseMat* m);

// destructor

~SparseMat();

///////// assignment operations ///////////

// this is an 0(1) operation; no data is copied

SparseMat& operator = (const SparseMat& m);

// (equivalent to the corresponding constructor with tryld=false)
SparseMat& operator = (const Mat& m);

// creates a full copy of the matrix
SparseMat clone() const;

// copy all the data to the destination matrix.

// the destination will be reallocated if needed.

void copyTo(SparseMat& m) const;

// converts 1D or 2D sparse matrix to dense 2D matrix.

// If the sparse matrix is 1D, the result will

// be a single-column matrix.

void copyTo(Mat& m) const;

// converts arbitrary sparse matrix to dense matrix.

// multiplies all the matrix elements by the specified scalar
void convertTo(SparseMat& m, int rtype, double alpha=1) const;
// converts sparse matrix to dense matrix with optional type conversion and scaling.
// When rtype=-1, the destination element type will be the same
// as the sparse matrix element type.

// Otherwise, rtype will specify the depth and

40

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

// the number of channels will remain the same as in the sparse matrix
void convertTo(Mat& m, int rtype, double alpha=1, double beta=0) const;

// not used now
void assignTo(SparseMat& m, int type=-1) const;

// reallocates sparse matrix. If it was already of the proper size and type,
// it is simply cleared with clear(), otherwise,

// the old matrix is released (using release()) and the new one is allocated.
void create(int dims, const intx _sizes, int _type);

// sets all the matrix elements to 0, which means clearing the hash table.
void clear();

// manually increases reference counter to the header.

void addref();

// decreses the header reference counter when it reaches 0.

// the header and all the underlying data are deallocated.

void release();

// converts sparse matrix to the old-style representation.
// all the elements are copied.

operator CvSparseMat+() const;

// size of each element in bytes

// (the matrix nodes will be bigger because of

// element indices and other SparseMat::Node elements).
size_t elemSize() const;

// elemSize()/channels()

size_t elemSizel() const;

// the same is in Mat
int type() const;
int depth() const;
int channels() const;

// returns the array of sizes and 0 if the matrix is not allocated
const intx size() const;

// returns i-th size (or 0)

int size(int i) const;

// returns the matrix dimensionality

int dims() const;

// returns the number of non-zero elements

size_t nzcount() const;

// compute element hash value from the element indices:

// 1D case

size_t hash(int i0) const;

// 2D case

size_t hash(int i0, int il) const;
// 3D case

size_t hash(int i@, int il, int i2) const;
// n-D case
size_t hash(const intx idx) const;

// low-level element-access functions,

// special variants for 1D, 2D, 3D cases, and the generic one for n-D case.
//

// return pointer to the matrix element.

// 1f the element is there (it is non-zero), the pointer to it is returned
// 1f it is not there and createMissing=false, NULL pointer is returned

2.1. Basic Structures 41

The OpenCV Reference Manual, Release 2.3.3

// 1f it is not there and createMissing=true, the new element
// is created and initialized with 0. Pointer to it is returned.
// If the optional hashval pointer is not NULL, the element hash value 1is

// not computed but xhashval is taken instead.

uchar* ptr(int i0, bool createMissing, size_t* hashval=0);

uchar* ptr(int i0, int il, bool createMissing, size_t* hashval=0);

ucharx ptr(int i0, int il, int i2, bool createMissing, size_tx* hashval=0);
uchar* ptr(const intx idx, bool createMissing, size_t* hashval=0);

// higher-level element access functions:

// ref<_Tp>(1i0,...[,hashval]) - equivalent to *(_Tpx)ptr(i0,...true[,hashval]).
// always return valid reference to the element.

// If it does not exist, it is created.

// find<_Tp>(10,...[,hashval]) - equivalent to (_const Tpx)ptr(io0,...false[,hashval]).
// return pointer to the element or NULL pointer if the element is not there.
// value<_Tp>(i0,...[,hashval]) - equivalent to

// { const _Tpx p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }

// that is, 0 is returned when the element is not there.

// note that _Tp must match the actual matrix type -

// the functions do not do any on-fly type conversion

// 1D case

template<typename _Tp>
template<typename _Tp>
template<typename _Tp>

// 2D case

template<typename _Tp>
template<typename _Tp>
template<typename _Tp>

// 3D case

template<typename _Tp>
template<typename _Tp>
template<typename _Tp>

// n-D case

template<typename _Tp>
template<typename _Tp>
template<typename _Tp>

// erase the specified

_Tp& ref(int i0, size_tx* hashval=0);
_Tp value(int i0, size_t* hashval=0) const;
const _Tp* find(int i@, size_t* hashval=0) const;

_Tp& ref(int i0, int i1, size_tx* hashval=0);
_Tp value(int i0, int il, size_tx hashval=0) const;
const _Tp* find(int i0, int il, size_t* hashval=0) const;

_Tp& ref(int i0, int il, int i2, size_t* hashval=0);
_Tp value(int i@, int il, int i2, size_t* hashval=0) const;

const _Tp* find(int i@, int il, int i2, size_t* hashval=0) const;

_Tp& ref(const intx idx, size_t* hashval=0);
_Tp value(const intx idx, size_t* hashval=0) const;
const _Tp* find(const intx idx, size_t* hashval=0) const;

matrix element.

// when there is no such an element, the methods do nothing

void erase(int i@, int
void erase(int i@, int

il, size_tx* hashval=0);
il, int i2, size_tx* hashval=0);

void erase(const intx idx, size_t* hashval=0);

// return the matrix iterators,

//

pointing to the first sparse matrix element,

SparseMatIterator begin();

SparseMatConstIterator
//

begin() const;

. or to the point after the last sparse matrix element

SparseMatIterator end();

SparseMatConstIterator

end() const;

// and the template forms of the above methods.
// _Tp must match the actual matrix type.

template<typename _Tp>

SparseMatIterator_<_Tp> begin();

42

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

1

template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
template<typename _Tp> SparseMatIterator_<_Tp> end();
template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;

// return value stored in the sparse martix node
template<typename _Tp> _Tp& value(Nodex n);

template<typename _Tp> const _Tp& value(const Nodex n) const;
////////////// some internally used methods ///////////////

// pointer to the sparse matrix header
Hdr* hdr;

The class SparseMat represents multi-dimensional sparse numerical arrays. Such a sparse array can store elements of
any type that Mat can store. Sparse means that only non-zero elements are stored (though, as a result of operations on
a sparse matrix, some of its stored elements can actually become 0. It is up to you to detect such elements and delete
them using SparseMat: :erase). The non-zero elements are stored in a hash table that grows when it is filled so that
the search time is O(1) in average (regardless of whether element is there or not). Elements can be accessed using the
following methods:

* Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and

SparseMat: :find), for example

const int dims = 5;

int size[] = {10, 10, 10, 10, 10};
SparseMat sparse_mat(dims, size, CV_32F);
for(int 1 = 0; i < 1000; i++)

{
int idx[dims];
for(int k = 0; k < dims; k++)
idx[k] = rand()
sparse_mat.ref<float>(idx) += 1.f;
}

* Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator. That is, the

iteration loop is familiar to STL users:

// prints elements of a sparse floating-point matrix
// and the sum of elements.
SparseMatConstIterator_<float>

it = sparse_mat.begin<float>(),

it _end = sparse_mat.end<float>();

double s = 0;

int dims = sparse_mat.dims();
for(; it !'= it_end; ++it)

{

// print element indices and the element value
const Nodex n = it.node();
printf("(")
for(int i = 0; 1 < dims; i++)
printf("
printf(":
s += *it;
}

printf("Element sum is

If you run this loop, you will notice that elements are not enumerated in a logical order (lexicographical, and so

2.1. Basic Structures

43

The OpenCV Reference Manual, Release 2.3.3

on). They come in the same order as they are stored in the hash table (semi-randomly). You may collect pointers
to the nodes and sort them to get the proper ordering. Note, however, that pointers to the nodes may become
invalid when you add more elements to the matrix. This may happen due to possible buffer reallocation.

* Combination of the above 2 methods when you need to process 2 or more sparse matrices simultaneously. For
example, this is how you can compute unnormalized cross-correlation of the 2 floating-point sparse matrices:

double cross_corr(const SparseMat& a, const SparseMat& b)

{

const SparseMat *_a = &a, *_b = &b;
// if b contains less elements than a,
// it 1is faster to iterate through b
if(_a->nzcount() > _b->nzcount())
std::swap(_a, _b);
SparseMatConstIterator_<float> it = _a->begin<float>(),
it_end = _a->end<float>();
double ccorr = 0;
for(; it '= it_end; ++it)
{
// take the next element from the first matrix
float avalue = xit;
const Nodex anode = it.node();
// and try to find an element with the same index in the second matrix.
// since the hash value depends only on the element index,
// reuse the hash value stored in the node
float bvalue = _b->value<float>(anode->idx,&anode->hashval);
ccorr += avaluexbvalue;
}

return ccorr;

SparseMat_

class SparseMat_

Template sparse n-dimensional array class derived from SparseMat

template<typename _Tp> class SparseMat_ : public SparseMat

{
public:
typedef SparseMatIterator_<_Tp> iterator;
typedef SparseMatConstIterator_<_Tp> const_iterator;
// constructors;
// the created matrix will have data type = DataType<_Tp>::type
SparseMat_();
SparseMat_(int dims, const intx _sizes);
SparseMat_(const SparseMat& m);
SparseMat_(const SparseMat_ & m);
SparseMat_(const Mat& m);
SparseMat_(const CvSparseMat+ m);
// assignment operators; data type conversion i1s done when necessary
SparseMat_& operator = (const SparseMat& m);
SparseMat_& operator = (const SparseMat_& m);
SparseMat_& operator = (const Mat& m);
// equivalent to the correspoding parent class methods
SparseMat_ clone() const;
44 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

1

void create(int dims, const intx _sizes);
operator CvSparseMat=() const;

// overriden methods that do extra checks for the data type
int type() const;

int depth() const;

int channels() const;

// more convenient element access operations.

// ref() is retained (but <_Tp> specification i1s not needed anymore);

// operator () is equivalent to SparseMat::value<_Tp>

_Tp& ref(int 10, size_t* hashval=0);

_Tp operator()(int i0, size_tx* hashval=0) const;

_Tp& ref(int i0, int il, size_tx* hashval=0);

_Tp operator()(int i0, int il, size_t* hashval=0) const;

_Tp& ref(int i0, int il, int i2, size_tx* hashval=0);

_Tp operator()(int i0, int il, int i2, size_tx hashval=0) const;
_Tp& ref(const intx idx, size_tx* hashval=0);

_Tp operator() (const intx idx, size_tx hashval=0) const;

// iterators

SparseMatIterator_<_Tp> begin();
SparseMatConstIterator_<_Tp> begin() const;
SparseMatIterator_<_Tp> end();
SparseMatConstIterator_<_Tp> end() const;

SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies notation of some
operations.

int sz[] = {10, 20, 30};
SparseMat_<double> M(3, sz);

M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9);

2.2 Basic C Structures and Operations

The section describes the main data structures, used by the OpenCV 1.x API, and the basic functions to create and
process the data structures.

CvPoint

struct CvPoint

2D point with integer coordinates (usually zero-based).

int X
x-coordinate
inty
y-coordinate

C: CvPoint cvPoint (int x, int y)

constructs CvPoint structure.

2.2. Basic C Structures and Operations

45

The OpenCV Reference Manual, Release 2.3.3

C: CvPoint cvPointFrom32f (CvPoint32f pt)
converts CvPoint2D32f to CvPoint.

See Also:

Point_

CvPoint2D32f

struct CvPoint2D32f
2D point with floating-point coordinates.

float x
x-coordinate

floaty
y-coordinate

C: CvPoint2D32f cvPoint2D32f (float x, float y)
constructs CvPoint2D32f structure.

C: CvPoint2D32f cvPointTo32f (CvPoint pt)
converts CvPoint to CvPoint2D32f.

See Also:

Point_

CvPoint3D32f

struct CvPoint3D32f
3D point with floating-point coordinates

float x
x-coordinate

floaty
y-coordinate

float z
z-coordinate

C: CvPoint3D32f cvPoint3D32f (float x, float y, float z)
constructs CvPoint3D32f structure.

See Also:

Point3_

CvPoint2D64f

struct CvPoint2D64f

2D point with double-precision floating-point coordinates.

double x
x-coordinate

46

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

double y
y-coordinate

C: CvPoint2D64f cvPoint2D64f (double x, double y)

constructs CvPoint2D64f structure.
See Also:
Point_

CvPoint3D64f

struct CvPoint3D64f

3D point with double-precision floating-point coordinates.

double x
x-coordinate

double y
y-coordinate

double z

C: CvPoint3D64f cvPoint3D64f (double x, double y, double z)

constructs CvPoint3D64f structure.
See Also:

Point3_

CvSize

struct CvSize
Size of a rectangle or an image.

int width
Width of the rectangle

int height
Height of the rectangle

C: CvSize cvSize (int width, int height)
constructs CvSize structure.

See Also:

Size_

CvSize2D32f

struct CvSize2D32f
Sub-pixel accurate size of a rectangle.

float width
Width of the rectangle

float height
Height of the rectangle

2.2. Basic C Structures and Operations

47

The OpenCV Reference Manual, Release 2.3.3

C: CvSize2D32f cvSize2D23f (float width, float height)
constructs CvSize2D32f structure.

See Also:

Size_

CvRect

struct CvRect
Stores coordinates of a rectangle.

int x
x-coordinate of the top-left corner

inty
y-coordinate of the top-left corner (sometimes bottom-left corner)

int width
Width of the rectangle

int height
Height of the rectangle

C: CvRect cvRect (int x, int y, int width, int height)
constructs CvRect structure.

See Also:

Rect_

CvScalar

struct CvScalar

A container for 1-,2-,3- or 4-tuples of doubles.
double[4] val

See Also:

Scalar_

CvTermCriteria

struct CvTermCriteria
Termination criteria for iterative algorithms.

int type
type of the termination criteria, one of:

e CV_TERMCRIT_ITER - stop the algorithm after max_iter iterations at maximum.

* CV_TERMCRIT_EPS - stop the algorithm after the achieved algorithm-dependent accuracy be-
comes lower than epsilon.

e CV_TERMCRIT_ITER+CV_TERMCRIT_EPS - stop the algorithm after max_iter iterations or when
the achieved accuracy is lower than epsilon, whichever comes the earliest.

48 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

int max_iter
Maximum number of iterations

double epsilon
Required accuracy

See Also:

TermCriteria

CvMat

struct CvMat
A multi-channel dense matrix.

int type
CvMat signature (CV_MAT_MAGIC_VAL) plus type of the elements. Type of the matrix elements can
be retrieved using CV_MAT_TYPE macro:

int type = CV_MAT_TYPE(matrix->type);

For description of possible matrix elements, see Mat.

int step
Full row length in bytes

int* refcount
Underlying data reference counter

union data
Pointers to the actual matrix data:

* ptr - pointer to 8-bit unsigned elements

* s - pointer to 16-bit signed elements

* i- pointer to 32-bit signed elements

* fl - pointer to 32-bit floating-point elements
* db - pointer to 64-bit floating-point elements

int rows
Number of rows

int cols
Number of columns

Matrix elements are stored row by row. Element (i, j) (i - 0-based row index, j - 0-based column index) of a matrix can
be retrieved or modified using CV_MAT_ELEM macro:

uchar pixval = CV_MAT_ELEM(grayimg, uchar, i, j)
CV_MAT_ELEM(cameraMatrix, float, 0, 2) = image.width*0.5f;

To access multiple-channel matrices, you can wuse CV_MAT_ELEM(matrix, type, i, j*nchannels +
channel_idx).

CvMat is now obsolete; consider using Mat instead.

2.2. Basic C Structures and Operations 49

The OpenCV Reference Manual, Release 2.3.3

CvMatND

struct CvMatND

Multi-dimensional dense multi-channel array.

int type
A CvMatND signature (CV_MATND_MAGIC_VAL) plus the type of elements. Type of the matrix ele-
ments can be retrieved using CV_MAT_TYPE macro:

int type = CV_MAT_TYPE(ndmatrix->type);
int dims
The number of array dimensions

int* refcount
Underlying data reference counter

union data
Pointers to the actual matrix data

e ptr - pointer to 8-bit unsigned elements

* s - pointer to 16-bit signed elements

* i - pointer to 32-bit signed elements

* fl - pointer to 32-bit floating-point elements
¢ db - pointer to 64-bit floating-point elements

array dim
Arrays of pairs (array size along the i-th dimension, distance between neighbor elements along i-th
dimension):

for(int i = 0; i < ndmatrix->dims; i++)
printf("size[i] = %d, step[i] = %d\n", ndmatrix->dim[i].size, ndmatrix->dim[i].step);

CvMatND is now obsolete; consider using Mat instead.

CvSparseMat

struct CvSparseMat

Multi-dimensional sparse multi-channel array.

int type
A CvSparseMat signature (CV_SPARSE_MAT_MAGIC_VAL) plus the type of sparse matrix ele-
ments. Similarly to CvMat and CvMatND, use CV_MAT_TYPE() to retrieve type of the elements.

int dims
Number of dimensions

int* refcount
Underlying reference counter. Not used.

CvSet* heap
A pool of hash table nodes

void** hashtable
The hash table. Each entry is a list of nodes.

50

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

int hashsize
Size of the hash table

int[] size
Array of dimension sizes

Iplimage

struct IplImage
IPL image header

int nSize
sizeof(IplImage)

int ID
Version, always equals 0

int nChannels
Number of channels. Most OpenCV functions support 1-4 channels.

int alphaChannel
Ignored by OpenCV

int depth
Channel depth in bits + the optional sign bit (IPL_DEPTH_SIGN). The supported depths are:

e IPL_DEPTH_8U - unsigned 8-bit integer. Equivalent to CV_8U in matrix types.

e IPL_DEPTH_8S - signed 8-bit integer. Equivalent to CV_8S in matrix types.

e IPL_DEPTH_16U - unsigned 16-bit integer. Equivalent to CV_16U in matrix types.
e IPL_DEPTH_16S - signed 8-bit integer. Equivalent to CV_16S in matrix types.

e IPL_DEPTH_32S - signed 32-bit integer. Equivalent to CV_32S in matrix types.

e IPL_DEPTH_32F - single-precision floating-point number. Equivalent to CV_32F in matrix
types.

e IPL_DEPTH_64F - double-precision floating-point number. Equivalent to CV_64F in matrix
types.

char[] colorModel
Ignored by OpenCV.

char[] channelSeq
Ignored by OpenCV

int dataOrder
0 = IPL_DATA_ORDER_PIXEL - interleaved color channels, 1 - separate color channels.
CreatelImage() only creates images with interleaved channels. For example, the usual layout of
a color image is: boogooToob10g10T10---

int origin
0 - top-left origin, 1 - bottom-left origin (Windows bitmap style)

int align
Alignment of image rows (4 or 8). OpenCV ignores this and uses widthStep instead.

int width
Image width in pixels

2.2. Basic C Structures and Operations 51

The OpenCV Reference Manual, Release 2.3.3

int height
Image height in pixels

IpIROI* roi
Region Of Interest (ROI). If not NULL, only this image region will be processed.

Ipllmage* maskROI
Must be NULL in OpenCV

void* imageId
Must be NULL in OpenCV

void* tileInfo
Must be NULL in OpenCV

int imageSize
Image data size in bytes. For interleaved data, this equals image->height - image->widthStep

char* imageData
A pointer to the aligned image data. Do not assign imageData directly. Use SetData().

int widthStep
The size of an aligned image row, in bytes.

int[] BorderMode
Border completion mode, ignored by OpenCV

int[] BorderConst
Constant border value, ignored by OpenCV

char* imageDataOrigin
A pointer to the origin of the image data (not necessarily aligned). This is used for image dealloca-
tion.

The IplImage is taken from the Intel Image Processing Library, in which the format is native. OpenCV only supports
a subset of possible IplImage formats, as outlined in the parameter list above.

In addition to the above restrictions, OpenCV handles ROIs differently. OpenCV functions require that the image
size or ROI size of all source and destination images match exactly. On the other hand, the Intel Image Processing
Library processes the area of intersection between the source and destination images (or ROIs), allowing them to vary
independently.

CvArr

struct CvArr

This is the “metatype” used only as a function parameter. It denotes that the function accepts arrays of multiple types,
such as Ipllmage*, CvMat* or even CvSeq* sometimes. The particular array type is determined at runtime by analyz-
ing the first 4 bytes of the header. In C++ interface the role of CvArr is played by InputArray and OutputArray.

ClearND

Clears a specific array element.

C: void cvClearND (CvArr* arr, int* idx)

Python: cv.ClearND (arr, idx) — None
Parameters

arr — Input array

52 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

idx — Array of the element indices

The function clears (sets to zero) a specific element of a dense array or deletes the element of a sparse array. If the

sparse array element does not exists, the function does nothing.

Clonelmage

Makes a full copy of an image, including the header, data, and ROI.
C: Ipllmage* cvCloneImage (const Ipllmage* image)
Python: cv.CloneImage(image) — copy

Parameters

image — The original image

CloneMat

Creates a full matrix copy.

C: CvMat* cvCloneMat (const CvMat* mat)

Python: cv.CloneMat(mat) — copy
Parameters

mat — Matrix to be copied

Creates a full copy of a matrix and returns a pointer to the copy. Note that the matrix copy is compacted, that is, it will

not have gaps between rows.

CloneMatND

Creates full copy of a multi-dimensional array and returns a pointer to the copy.

C: CvMatND* cvCloneMatND (const CvMatND* mat)
Python: cv.CloneMatND(mat) — copy
Parameters

mat — Input array

CloneSparseMat

Creates full copy of sparse array.
C: CvSparseMat* cvCloneSparseMat (const CvSparseMat* mat)
Parameters

mat — Input array

The function creates a copy of the input array and returns pointer to the copy.

2.2. Basic C Structures and Operations

53

The OpenCV Reference Manual, Release 2.3.3

ConvertScale

Converts one array to another with optional linear transformation.
C: void cvConvertScale(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
Python: cv.ConvertScale(src, dst, scale=1.0, shift=0.0) — None

Python: cv.Convert(src, dst) — None

#define cvCvtScale cvConvertScale
#define cvScale cvConvertScale
#define cvConvert(src, dst) cvConvertScale((src), (dst), 1, 0)

Parameters
src — Source array
dst — Destination array
scale — Scale factor
shift — Value added to the scaled source array elements

The function has several different purposes, and thus has several different names. It copies one array to another with
optional scaling, which is performed first, and/or optional type conversion, performed after:

dst(I) = scalesrc(I) + (shifto, shifty,...)

All the channels of multi-channel arrays are processed independently.

The type of conversion is done with rounding and saturation, that is if the result of scaling + conversion can not be
represented exactly by a value of the destination array element type, it is set to the nearest representable value on the
real axis.

Copy

Copies one array to another.
C: void cvCopy (const CvArr* src, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Copy (src, dst, mask=None) — None
Parameters
src — The source array
dst — The destination array

mask — Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function copies selected elements from an input array to an output array:
dst(I) =src(I) if mask(I) #D0.

If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays must have the
same type, the same number of dimensions, and the same size. The function can also copy sparse arrays (mask is not
supported in this case).

54 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

CreateData

Allocates array data
C: void cvCreateData (CvArr* arr)
Python: cv.CreateData(arr) — None
Parameters
arr — Array header

The function allocates image, matrix or multi-dimensional dense array data. Note that in the case of
matrix types OpenCV allocation functions are used. In the case of Ipllmage they are used unless
CV_TURN_ON_IPL_COMPATIBILITY() has been called before. In the latter case IPL functions are used to allocate
the data.

Createlmage

Creates an image header and allocates the image data.
C: Ipllmage* cvCreateImage (CvSize size, int depth, int channels)
Python: cv.CreateImage (size, depth, channels) — image
Parameters
size — Image width and height
depth — Bit depth of image elements. See IplImage for valid depths.

channels — Number of channels per pixel. See IplImage for details. This function only
creates images with interleaved channels.

This function call is equivalent to the following code:

header = cvCreateImageHeader(size, depth, channels);
cvCreateData(header);

CreatelmageHeader

Creates an image header but does not allocate the image data.
C: Ipllmage* cvCreateImageHeader (CvSize size, int depth, int channels)
Python: cv.CreateImageHeader (size, depth, channels) — image
Parameters
size — Image width and height
depth — Image depth (see CreateImage())

channels — Number of channels (see CreateImage())

CreateMat

Creates a matrix header and allocates the matrix data.

C: CvMat* cvCreateMat (int rows, int cols, int type)

2.2. Basic C Structures and Operations 55

The OpenCV Reference Manual, Release 2.3.3

Python: cv.CreateMat (rows, cols, type) — mat
Parameters
rows — Number of rows in the matrix
cols — Number of columns in the matrix

type — The type of the matrix elements in the form CV_<bit depth><S|U|F>C<number of
channels> , where S=signed, U=unsigned, F=float. For example, CV _ 8UC1 means the
elements are 8-bit unsigned and the there is 1 channel, and CV _ 32SC2 means the elements
are 32-bit signed and there are 2 channels.

The function call is equivalent to the following code:

CvMat* mat = cvCreateMatHeader(rows, cols, type);
cvCreateData(mat);

CreateMatHeader

Creates a matrix header but does not allocate the matrix data.
C: CvMat* cvCreateMatHeader (int rows, int cols, int type)
Python: cv.CreateMatHeader (rows, cols, type) — mat
Parameters
rows — Number of rows in the matrix
cols — Number of columns in the matrix
type — Type of the matrix elements, see CreateMat ()

The function allocates a new matrix header and returns a pointer to it. The matrix data can then be allocated using
CreateData() or set explicitly to user-allocated data via SetData().

CreateMatND

Creates the header and allocates the data for a multi-dimensional dense array.
C: CvMatND* cvCreateMatND (int dims, const int* sizes, int type)
Python: cv.CreateMatND (dims, type) — None

Parameters

dims — Number of array dimensions. This must not exceed CV_MAX_DIM (32 by default,
but can be changed at build time).

sizes — Array of dimension sizes.
type — Type of array elements, see CreateMat() .
This function call is equivalent to the following code:

CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type);
cvCreateData(mat);

56 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

CreateMatNDHeader

Creates a new matrix header but does not allocate the matrix data.
C: CvMatND* cvCreateMatNDHeader (int dims, const int* sizes, int type)
Python: cv.CreateMatNDHeader (dims, type) — None
Parameters
dims — Number of array dimensions
sizes — Array of dimension sizes
type — Type of array elements, see CreateMat ()

The function allocates a header for a multi-dimensional dense array. The array data can further be allocated using
CreateData() or set explicitly to user-allocated data via SetData().

CreateSparseMat

Creates sparse array.
C: CvSparseMat* cvCreateSparseMat (int dims, const int* sizes, int type)
Parameters

dims — Number of array dimensions. In contrast to the dense matrix, the number of dimen-
sions is practically unlimited (up to 2'¢).

sizes — Array of dimension sizes
type — Type of array elements. The same as for CvMat

The function allocates a multi-dimensional sparse array. Initially the array contain no elements, that is PtrND () and
other related functions will return O for every index.

CrossProduct

Calculates the cross product of two 3D vectors.
C: void cvCrossProduct (const CvArr* srcl, const CvArr* sre2, CvArr* dst)
Python: cv.CrossProduct(srcl, src2, dst) — None
Parameters
srcl — The first source vector
src2 — The second source vector
dst — The destination vector

The function calculates the cross product of two 3D vectors:
dst =srcl x src2

or:

dsty = srclysrc2z —srclzsrc2;
dsty, = srclzsrc2y —srclysrc2s
dstz = srclysrc2, —srclysrc2;

2.2. Basic C Structures and Operations 57

The OpenCV Reference Manual, Release 2.3.3

DotProduct

Calculates the dot product of two arrays in Euclidian metrics.

C: double cvDotProduct (const CvArr* srcl, const CvArr* sre2)

Python:

cv.DotProduct(srcl, src2) — double
Parameters
srcl — The first source array

src2 — The second source array

The function calculates and returns the Euclidean dot product of two arrays.

srcl e src2 = Z(srcl(l)srcz(l))
i

In the case of multiple channel arrays, the results for all channels are accumulated. In particular, cvDotProduct(a,a)
where a is a complex vector, will return |lal|?. The function can process multi-dimensional arrays, row by row, layer
by layer, and so on.

Get?D

Python:
Python:
Python:
Python:

CvScalar cvGetl1D (const CvArr* arr, int idx0)
CvScalar cvGet2D (const CvArr* arr, int idx0, int idx1)
CvScalar cvGet3D (const CvArr* arr, int idx0, int idx1, int idx2)

CvScalar cvGetND (const CvArr* arr, int* idx)

cv.GetlD (arr, idx) — scalar
cv.Get2D (arr, idx0, idx1) — scalar
cv.Get3D (arr, idx0, idx1, idx2) — scalar

cv.GetND (arr, indices) — scalar

Return a specific array element.

Parameters
arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index

idx — Array of the element indices

The functions return a specific array element. In the case of a sparse array the functions return 0O if the requested node
does not exist (no new node is created by the functions).

GetCol(s)

Returns one of more array columns.

C: CvMat* cvGetCol (const CvArr* arr, CvMat* submat, int col)

C: CvMat* cvGetCols (const CvArr* arr, CvMat* submat, int startCol, int endCol)

58

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Python: cv.GetCol(arr, col) — submat
Python: cv.GetCols (arr, startCol, endCol) — submat
Parameters
arr — Input array
submat — Pointer to the resulting sub-array header
col — Zero-based index of the selected column
startCol — Zero-based index of the starting column (inclusive) of the span
endCol — Zero-based index of the ending column (exclusive) of the span

The functions return the header, corresponding to a specified column span of the input array. That is, no data is copied.
Therefore, any modifications of the submatrix will affect the original array. If you need to copy the columns, use
CloneMat (). cvGetCol(arr, submat, col) is a shortcut for cvGetCols(arr, submat, col, col+l).

GetDiag

Returns one of array diagonals.
C: CvMat* cvGetDiag(const CvArr* arr, CvMat* submat, int diag=0)
Python: cv.GetDiag/(arr, diag=0) — submat
Parameters
arr — Input array
submat — Pointer to the resulting sub-array header

diag — Index of the array diagonal. Zero value corresponds to the main diagonal, -1 corre-
sponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and
so forth.

The function returns the header, corresponding to a specified diagonal of the input array.

GetDims

Return number of array dimensions
C: int cvGetDims (const CvArr* arr, int* sizes=NULL)
Python: cv.GetDims (arr) — list
Parameters
arr — Input array

sizes — Optional output vector of the array dimension sizes. For 2d arrays the number of
rows (height) goes first, number of columns (width) next.

The function returns the array dimensionality and the array of dimension sizes. In the case of IplImage or CvMat it
always returns 2 regardless of number of image/matrix rows. For example, the following code calculates total number
of array elements:

int sizes[CV_MAX_DIM];
int i, total = 1;
int dims = cvGetDims(arr, size);

2.2. Basic C Structures and Operations 59

The OpenCV Reference Manual, Release 2.3.3

for(i = 0; i < dims; i++)
total *= sizes[i];

GetDimSize

Returns array size along the specified dimension.
C: int cvGetDimSize (const CvArr* arr, int index)
Parameters
arr — Input array

index — Zero-based dimension index (for matrices 0 means number of rows, 1 means number
of columns; for images 0 means height, 1 means width)

GetElemType

Returns type of array elements.
C: int cvGetElemType (const CVArr* arr)
Python: cv.GetElemType(arr) — int
Parameters
arr — Input array

The function returns type of the array elements. In the case of IplImage the type is converted to CvMat-like represen-
tation. For example, if the image has been created as:

IplImage* img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 3);

The code cvGetElemType(img) will return CV_8UC3.

Getlmage

Returns image header for arbitrary array.
C: Ipllmage* cvGetImage (const CvArr* arr, Iplimage* imageHeader)
Python: cv.GetImage(arr) — iplimage
Parameters
arr — Input array
imageHeader — Pointer to IplImage structure used as a temporary buffer

The function returns the image header for the input array that can be a matrix (CvMat) or image (IplImage). In the
case of an image the function simply returns the input pointer. In the case of CvMat it initializes an imageHeader
structure with the parameters of the input matrix. Note that if we transform IplImage to CvMat using GetMat () and
then transform CvMat back to Ipllmage using this function, we will get different headers if the ROl is set in the original
image.

60 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

GetlmageCOl

Returns the index of the channel of interest.
C: int cvGetImageCOI (const Ipllmage* image)
Python: cv.GetImageCOI(image) — channel
Parameters
image — A pointer to the image header

Returns the channel of interest of in an Ipllmage. Returned values correspond to the coi in SetImageCOI().

GetlmageROI

Returns the image ROI.
C: CvRect cvGetImageROI (const Ipllmage* image)
Python: cv.GetImageROI(image) — CvRect
Parameters
image — A pointer to the image header

If there is no ROI set, cvRect (0,0, image->width, image->height) is returned.

GetMat

Returns matrix header for arbitrary array.
C: CvMat* cvGetMat (const CvArr* arr, CvMat* header, int* coi=NULL, int allowND=0)
Python: cv.GetMat (arr, allowND=0) — cvmat
Parameters
arr — Input array
header — Pointer to CvMat structure used as a temporary buffer
coi — Optional output parameter for storing COI

allowND — If non-zero, the function accepts multi-dimensional dense arrays (CvMatND¥*)
and returns 2D matrix (if CvMatND has two dimensions) or 1D matrix (when CvMatND
has 1 dimension or more than 2 dimensions). The CvMatND array must be continuous.

The function returns a matrix header for the input array that can be a matrix - CvMat, an image - IplImage, or a
multi-dimensional dense array - CvMatND (the third option is allowed only if allowND != 0) . In the case of matrix
the function simply returns the input pointer. In the case of IplImage* or CvMatND it initializes the header structure
with parameters of the current image ROI and returns &eader. Because COI is not supported by CvMat, it is returned
separately.

The function provides an easy way to handle both types of arrays - IplImage and CvMat using the same code. Input
array must have non-zero data pointer, otherwise the function will report an error.

See Also:

GetImage(), cvarrToMat().

2.2. Basic C Structures and Operations 61

The OpenCV Reference Manual, Release 2.3.3

Note: If the input array is IplImage with planar data layout and COI set, the function returns the pointer to the
selected plane and COI == 0. This feature allows user to process IplImage strctures with planar data layout, even
though OpenCV does not support such images.

GetNextSparseNode

Returns the next sparse matrix element
C: CvSparseNode* cvGetNextSparseNode (CvSparseMatlterator* matIterator)
Parameters
matlterator — Sparse array iterator

The function moves iterator to the next sparse matrix element and returns pointer to it. In the current version there is
no any particular order of the elements, because they are stored in the hash table. The sample below demonstrates how
to iterate through the sparse matrix:

// print all the non-zero sparse matrix elements and compute their sum
double sum = 0;

int i, dims = cvGetDims(sparsemat);

CvSparseMatIterator it;

CvSparseNode* node = cvInitSparseMatIterator(sparsemat, &it);

for(; node != 0; node = cvGetNextSparseNode(&it))

{
/* get pointer to the element indices x*/
intx idx = CV_NODE_IDX(array, node);
/* get value of the element (assume that the type is CV_32FC1) x*/
float val = *(float+)CV_NODE_VAL(array, node);
printf("M");
for(i = 0; i < dims; i++)
printf("[%d]", idx[i]);
printf("=%g\n", val);
sum += val;
}

printf("nTotal sum = %g\n", sum);

GetRawData

Retrieves low-level information about the array.
C: void cvGetRawData (const CvArr* arr, uchar** data, int* step=NULL, CvSize* roiSize=NULL)
Parameters
arr — Array header
data — Output pointer to the whole image origin or ROI origin if ROI is set
step — Output full row length in bytes
roiSize — Output ROI size

The function fills output variables with low-level information about the array data. All output parameters are optional,
so some of the pointers may be set to NULL. If the array is IplImage with ROI set, the parameters of ROI are returned.

62 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

The following example shows how to get access to array elements. It computes absolute values of the array elements

float* data;
int step;
CvSize size;

cvGetRawData(array, (ucharxx)&data, &step, &size);
step /= sizeof(datal[0]);

for(int y = 0; y < size.height; y++, data += step)
for(int x = 0; x < size.width; x++)
data[x] = (float)fabs(data[x]);

GetReal?D

Return a specific element of single-channel 1D, 2D, 3D or nD array.

C: double cvGetReallD (const CvArr* arr, int idx0)

C: double cvGetReal2D (const CvArr* arr, int idx0, int idx1)

C: double cvGetReal3D (const CvArr* arr, int idx0, int idx1, int idx2)

C: double cvGetRealND (const CvArr* arr, int* idx)

Python: cv.GetReallD (arr, idx0) — float

Python: cv.GetReal2D (arr, idx0, idx1) — float

Python: cv.GetReal3D (arr, idx0, idx1, idx2) — float

Python: cv.GetRealND (arr, idx) — float

Parameters

arr — Input array. Must have a single channel.
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note
that Get?D functions can be used safely for both single-channel and multiple-channel arrays though they are a bit
slower.

In the case of a sparse array the functions return O if the requested node does not exist (no new node is created by the
functions).

GetRow(s)

Returns array row or row span.

C: CvMat* cvGetRow (const CvArr* arr, CvMat* submat, int row)

C: CvMat* cvGetRows (const CvArr* arr, CvMat* submat, int startRow, int endRow, int deltaRow=1)
Python: cv.GetRow(arr, row) — submat

Python: cv.GetRows (arr, startRow, endRow, deltaRow=1) — submat

2.2. Basic C Structures and Operations 63

The OpenCV Reference Manual, Release 2.3.3

Parameters
arr — Input array
submat — Pointer to the resulting sub-array header
row — Zero-based index of the selected row
startRow — Zero-based index of the starting row (inclusive) of the span
endRow — Zero-based index of the ending row (exclusive) of the span

deltaRow — Index step in the row span. That is, the function extracts every deltaRow -th
row from startRow and up to (but not including) endRow .

The functions return the header, corresponding to a specified row/row span of the input array. cvGetRow(arr,
submat, row) is a shortcut for cvGetRows (arr, submat, row, row+1l).

GetSize

Returns size of matrix or image ROI.
C: CvSize cvGetSize(const CvArr* arr)
Python: cv.GetSize (arr)-> (width, height)
Parameters
arr — array header

The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the input matrix or
image. In the case of image the size of ROI is returned.

GetSubRect

Returns matrix header corresponding to the rectangular sub-array of input image or matrix.
C: CvMat* cvGetSubRect (const CvArr* arr, CvMat* submat, CvRect rect)
Python: cv.GetSubRect (arr, rect) — submat
Parameters
arr — Input array
submat — Pointer to the resultant sub-array header
rect — Zero-based coordinates of the rectangle of interest

The function returns header, corresponding to a specified rectangle of the input array. In other words, it allows the
user to treat a rectangular part of input array as a stand-alone array. ROI is taken into account by the function so the
sub-array of ROI is actually extracted.

DecRefData

Decrements an array data reference counter.
C: void cvDecRefData(CvArr* arr)
Parameters

arr — Pointer to an array header

64 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

The function decrements the data reference counter in a CvMat or CvMatND if the reference counter pointer is not
NULL. If the counter reaches zero, the data is deallocated. In the current implementation the reference counter is not
NULL only if the data was allocated using the CreateData() function. The counter will be NULL in other cases such
as: external data was assigned to the header using SetData (), header is part of a larger matrix or image, or the header
was converted from an image or n-dimensional matrix header.

IncRefData

Increments array data reference counter.
C: int cvIncRefData(CvArr* arr)
Parameters
arr — Array header

The function increments CvMat or CvMatND data reference counter and returns the new counter value if the reference
counter pointer is not NULL, otherwise it returns zero.

InitimageHeader

Initializes an image header that was previously allocated.

C: Ipllmage* cvInitImageHeader (Ipllmage* image, CvSize size, int depth, int channels, int origin=0, int
align=4)

Parameters
image — Image header to initialize
size — Image width and height
depth — Image depth (see CreateImage())
channels — Number of channels (see CreateImage())
origin — Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL
align — Alignment for image rows, typically 4 or 8§ bytes

The returned IplImagex* points to the initialized header.

InitMatHeader

Initializes a pre-allocated matrix header.

C: CvMat* cvInitMatHeader (CvMat* mat, int rows, int cols, int type, void* data=NULL, int
step=CV_AUTOSTEP)

Parameters
mat — A pointer to the matrix header to be initialized
rows — Number of rows in the matrix
cols — Number of columns in the matrix
type — Type of the matrix elements, see CreateMat() .

data — Optional: data pointer assigned to the matrix header

2.2. Basic C Structures and Operations 65

The OpenCV Reference Manual, Release 2.3.3

step — Optional: full row width in bytes of the assigned data. By default, the minimal
possible step is used which assumes there are no gaps between subsequent rows of the
matrix.

This function is often used to process raw data with OpenCV matrix functions. For example, the following code
computes the matrix product of two matrices, stored as ordinary arrays:

double a[] = { 1, 2, 3, 4,
5,6, 7, 8,
9, 10, 11, 12 };
double b[] = { 1, 5, 9,
2, 6, 10,
3, 7, 11,
4, 8, 12 };
double c[9];
CvMat Ma, Mb, Mc ;
cvInitMatHeader(&Ma, 3, 4, CV_64FCl, a);
cvInitMatHeader(&Mb, 4, 3, CV_64FC1l, b);
cvInitMatHeader(&Mc, 3, 3, CV_64FCl1l, c);

cvMatMulAdd (&Ma, &Mb, 0, &Mc);
// the c array now contains the product of a (3x4) and b (4x3)

InitMatNDHeader

Initializes a pre-allocated multi-dimensional array header.

C: CvMatND* cvInitMatNDHeader (CvMatND* mat, int dims, const int* sizes, int type, void*
data=NULL)

Parameters
mat — A pointer to the array header to be initialized
dims — The number of array dimensions
sizes — An array of dimension sizes
type — Type of array elements, see CreateMat ()

data — Optional data pointer assigned to the matrix header

InitSparseMatlterator

Initializes sparse array elements iterator.

C: CvSparseNode* cvInitSparseMatIterator (const CvSparseMat* mat, CvSparseMatlterator* matltera-
tor)

Parameters
mat — Input array
matlterator — Initialized iterator

The function initializes iterator of sparse array elements and returns pointer to the first element, or NULL if the array
is empty.

66 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Mat

Initializes matrix header (lightweight variant).
C: CvMat cvMat (int rows, int cols, int type, void* data=NULL)
Parameters
rows — Number of rows in the matrix
cols — Number of columns in the matrix
type — Type of the matrix elements - see CreateMat ()
data — Optional data pointer assigned to the matrix header

Initializes a matrix header and assigns data to it. The matrix is filled row-wise (the first cols elements of data form
the first row of the matrix, etc.)

This function is a fast inline substitution for InitMatHeader (). Namely, it is equivalent to:

CvMat mat;
cvInitMatHeader(&mat, rows, cols, type, data, CV_AUTOSTEP);

Ptr?D

Return pointer to a particular array element.

C: uchar* cvPtrilD(const CvArr* arr, int idx0, int* type=NULL)

C: uchar* cvPtr2D(const CvArr* arr, int idx0, int idx1, int* type=NULL)

C: uchar* cvPtr3D(const CvArr* arr, int idx0, int idx1, int idx2, int* type=NULL)
C

: uchar® cvPtrND (const CvArr* arr, int* 1dx, int* type= , int createNode=1, unsigned int* pre-
har* (CvArr* int* idx, int* type=NULL, i Node=1 igned int* p
calcHashval=NULL)

Parameters
arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices
type — Optional output parameter: type of matrix elements

createNode — Optional input parameter for sparse matrices. Non-zero value of the parame-
ter means that the requested element is created if it does not exist already.

precalcHashval — Optional input parameter for sparse matrices. If the pointer is not NULL,
the function does not recalculate the node hash value, but takes it from the specified location.
It is useful for speeding up pair-wise operations (TODO: provide an example)

The functions return a pointer to a specific array element. Number of array dimension should match to the number
of indices passed to the function except for cvPtr1D function that can be used for sequential access to 1D, 2D or nD
dense arrays.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and set it to
Zero.

2.2. Basic C Structures and Operations 67

The OpenCV Reference Manual, Release 2.3.3

All these as well as other functions accessing array elements (GetND() , GetRealND() , Set() , SetND() ,
SetRealND ()) raise an error in case if the element index is out of range.

ReleaseData

Releases array data.
C: void cvReleaseData(CvArr* arr)
Parameters
arr — Array header

The function releases the array data. In the case of CvMat or CvMatND it simply calls cvDecRefData(), that is the
function can not deallocate external data. See also the note to CreateData() .

Releaselmage

Deallocates the image header and the image data.
C: void cvReleaseImage (Ipllmage** image)
Parameters
image — Double pointer to the image header
This call is a shortened form of

if(ximage)

{
cvReleaseData(*image) ;
cvReleaseImageHeader (image);
}
ReleaselmageHeader

Deallocates an image header.
C: void cvReleaseImageHeader (Ipllmage** image)
Parameters
image — Double pointer to the image header
This call is an analogue of

if(image)

{
iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);
ximage = 0;

}

but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro).

68 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

ReleaseMat

Deallocates a matrix.
C: void cvReleaseMat (CvMat** mat)
Parameters
mat — Double pointer to the matrix

The function decrements the matrix data reference counter and deallocates matrix header. If the data reference counter
is 0, it also deallocates the data.

if(xmat)
cvDecRefData(*mat);
cvFree((void+x*)mat);

ReleaseMatND

Deallocates a multi-dimensional array.
C: void cvReleaseMatND (CvMatND** mat)
Parameters
mat — Double pointer to the array

The function decrements the array data reference counter and releases the array header. If the reference counter reaches
0, it also deallocates the data.

if(xmat)
cvDecRefData(*mat);
cvFree((void+x*)mat);

ReleaseSparseMat

Deallocates sparse array.
C: void cvReleaseSparseMat (CvSparseMat** mat)
Parameters
mat — Double pointer to the array

The function releases the sparse array and clears the array pointer upon exit.

ResetimageROI

Resets the image ROI to include the entire image and releases the ROI structure.
C: void cvResetImageROI (Iplimage* image)
Python: cv.ResetImageROI(image) — None
Parameters
image — A pointer to the image header

This produces a similar result to the following, but in addition it releases the ROI structure.

2.2. Basic C Structures and Operations 69

The OpenCV Reference Manual, Release 2.3.3

cvSetImageROI(image, cvRect(0, O, image->width, image->height));
cvSetImageCOI(image, 0);

Reshape

Changes shape of matrix/image without copying data.
C: CvMat* cvReshape (const CvArr* arr, CvMat* header, int newCn, int newRows=0)
Python: cv.Reshape (arr, newCn, newRows=0) — cvmat
Parameters
arr — Input array
header — Output header to be filled

newCn — New number of channels. ‘newCn =0’ means that the number of channels remains
unchanged.

newRows — New number of rows. ‘newRows = 0’ means that the number of rows remains
unchanged unless it needs to be changed according to newCn value.

The function initializes the CvMat header so that it points to the same data as the original array but has a different
shape - different number of channels, different number of rows, or both.

The following example code creates one image buffer and two image headers, the first is for a 320x240x3 image and
the second is for a 960x240x1 image:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
CvMat gray_mat_hdr;

IplImage gray_img_hdr, xgray_img;

cvReshape(color_img, &gray_mat_hdr, 1);

gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts a 3x3 matrix to a single 1x9 vector:

CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvMat row_header, xrow;
row = cvReshape(mat, &row_header, 0, 1);

ReshapeMatND

Changes the shape of a multi-dimensional array without copying the data.

C: CvArr* cvReshapeMatND (const CvArr* arr, int sizeofHeader, CvArr* header, int newCn, int newDims,
int* newSizes)

Python: cv.ReshapeMatND (arr, newCn, newDims) — cvmat
Parameters
arr — Input array

sizeofHeader — Size of output header to distinguish between Ipllmage, CvMat and Cv-
MatND output headers

header — Output header to be filled

newCn — New number of channels. newCn = 0 means that the number of channels remains
unchanged.

70 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

newDims — New number of dimensions. newDims = 0 means that the number of dimen-
sions remains the same.

newSizes — Array of new dimension sizes. Only newDims-1 values are used, because the
total number of elements must remain the same. Thus, if newDims = 1, newSizes array is
not used.

The function is an advanced version of Reshape () that can work with multi-dimensional arrays as well (though it can
work with ordinary images and matrices) and change the number of dimensions.

Below are the two samples from the Reshape () description rewritten using ReshapeMatND () :

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
IplImage gray_img_hdr, *gray_img;
gray_img = (IplImagex)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);

/* second example is modified to convert 2x2x2 array to 8xl vector */
int size[] = { 2, 2, 2 };

CvMatND* mat = cvCreateMatND(3, size, CV_32F);

CvMat row_header, x*row;

row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0);

Set

Sets every element of an array to a given value.
C: void cvSet (CvArr* arr, CvScalar value, const CvArr* mask=NULL)
Python: cv.Set (arr, value, mask=None) — None
Parameters
arr — The destination array
value — Fill value

mask — Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function copies the scalar value to every selected element of the destination array:
arr(I) =value if mask(I)#0

If array arr is of IplImage type, then is ROI used, but COI must not be set.

Set?D

Change the particular array element.

C: void cvSetlD (CvArr* arr, int idx0, CvScalar value)

C: void cvSet2D (CvArr* arr, int idx0, int idx1, CvScalar value)

C: void cvSet3D (CvArr* arr, int idx0, int idx1, int idx2, CvScalar value)
C: void cvSetND (CvArr* arr, int* idx, CvScalar value)

Python: cv.SetlD (arr, idx, value) — None

Python: cv.Set2D(arr, idx0, idx1, value) — None

2.2. Basic C Structures and Operations 71

The OpenCV Reference Manual, Release 2.3.3

Python: cv.Set3D(arr, idx0, idx1, idx2, value) — None
Python: cv.SetND (arr, indices, value) — None
Parameters

arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices
value — The assigned value

The functions assign the new value to a particular array element. In the case of a sparse array the functions create the
node if it does not exist yet.

SetData

Assigns user data to the array header.
C: void cvSetData(CvArr* arr, void* data, int step)
Python: cv.SetData (arr, data, step) — None
Parameters
arr — Array header
data — User data
step — Full row length in bytes

The function assigns user data to the array header. Header should be initialized before using cvCreateMatHeader(),
cvCreateImageHeader(), cvCreateMatNDHeader (), cvInitMatHeader(), cvInitImageHeader() or
cvInitMatNDHeader().

SetimageCOl

Sets the channel of interest in an Ipllmage.
C: void cvSetImageCOI (Ipllmage* image, int coi)
Python: cv.SetImageCOI (image, coi) — None
Parameters
image — A pointer to the image header

coi — The channel of interest. O - all channels are selected, 1 - first channel is selected, etc.
Note that the channel indices become 1-based.

If the ROl is set to NULL and the coi is not 0, the ROI is allocated. Most OpenCV functions do rot support the COI
setting, so to process an individual image/matrix channel one may copy (via Copy() or Split()) the channel to a
separate image/matrix, process it and then copy the result back (via Copy () or Merge()) if needed.

72 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

SetlmageROI

Sets an image Region Of Interest (ROI) for a given rectangle.
C: void cvSetImageROI (Ipllmage* image, CvRect rect)
Python: cv.SetImageROI(image, rect) — None
Parameters
image — A pointer to the image header
rect — The ROI rectangle
If the original image ROI was NULL and the rect is not the whole image, the ROI structure is allocated.

Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For example, all of
the pixel coordinates are counted from the top-left (or bottom-left) corner of the ROI, not the original image.

SetReal?D

Change a specific array element.
C: void cvSetReallD (CvArr* arr, int idx0, double value)
C: void cvSetReal2D (CvArr* arr, int idx0, int idx1, double value)
C: void cvSetReal3D (CvArr* arr, int idx0, int idx1, int idx2, double value)
C: void cvSetReallND (CvArr* arr, int* idx, double value)
Python: cv.SetReallD (arr, idx, value) — None
Python: cv.SetReal2D (arr, idx0, idx1, value) — None
Python: cv.SetReal3D (arr, idx0, idx1, idx2, value) — None
Python: cv.SetRealND (arr, indices, value) — None
Parameters
arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices
value — The assigned value

The functions assign a new value to a specific element of a single-channel array. If the array has multiple channels, a
runtime error is raised. Note that the Set =D function can be used safely for both single-channel and multiple-channel
arrays, though they are a bit slower.

In the case of a sparse array the functions create the node if it does not yet exist.

SetZero

Clears the array.

C: void cvSetZero (CvAIrr* arr)

2.2. Basic C Structures and Operations 73

The OpenCV Reference Manual, Release 2.3.3

Python: cv.SetZero(arr) — None
Parameters
arr — Array to be cleared

The function clears the array. In the case of dense arrays (CvMat, CvMatND or Ipllmage), cvZero(array) is equivalent
to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the elements are removed.

mGet

Returns the particular element of single-channel floating-point matrix.
C: double cvmGet (const CvMat* mat, int row, int col)
Python: cv.mGet (mat, row, col) — double
Parameters
mat — Input matrix
row — The zero-based index of row
col — The zero-based index of column

The function is a fast replacement for GetReal2D () in the case of single-channel floating-point matrices. It is faster
because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column
ranges only in debug mode.

mSet

Sets a specific element of a single-channel floating-point matrix.
C: void cvmSet (CvMat* mat, int row, int col, double value)
Python: cv.mSet (mat, row, col, value) — None
Parameters

mat — The matrix

row — The zero-based index of row

col — The zero-based index of column

value — The new value of the matrix element

The function is a fast replacement for SetReal2D () in the case of single-channel floating-point matrices. It is faster
because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column
ranges only in debug mode.

SetIPLAllocators

Makes OpenCV use IPL functions for allocating Ipllmage and IpIROI structures.

C: void cvSetIPLAllocators (Cv_iplCreateImageHeader create_header, Cv_iplAllocateImageData al-
locate_data, Cv_iplDeallocate deallocate, Cv_iplCreateROI create_roi,
Cv_iplClonelmage clone_image)

Normally, the function is not called directly. Instead, a simple macro CV_TURN_ON_IPL_COMPATIBILITY () is used
that calls cvSetIPLAllocators and passes there pointers to IPL allocation functions.

74 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

CV_TURN_ON_IPL_COMPATIBILITY()

RNG

Initializes a random number generator state.
C: CvRNG cvRNG (int64 seed=-1)
Python: cv.RNG(seed=-1LL) — CvRNG
Parameters
seed — 64-bit value used to initiate a random sequence

The function initializes a random number generator and returns the state. The pointer to the state can be then passed to
the RandInt (), RandReal() and RandArr () functions. In the current implementation a multiply-with-carry generator
is used.

See Also:
the C++ class RNG replaced CvRNG.

RandArr

Fills an array with random numbers and updates the RNG state.
C: void cvRandArr (CvRNG* rng, CvArr* arr, int distType, CvScalar param1, CvScalar param2)
Python: cv.RandArr(rng, arr, distType, paraml, param2) — None
Parameters

rng — CvRNG state initialized by RNG ()

arr — The destination array

distType — Distribution type

— CV_RAND_UNI uniform distribution

— CV_RAND_NORMAL normal or Gaussian distribution

paraml — The first parameter of the distribution. In the case of a uniform distribution it
is the inclusive lower boundary of the random numbers range. In the case of a normal
distribution it is the mean value of the random numbers.

param2 — The second parameter of the distribution. In the case of a uniform distribution
it is the exclusive upper boundary of the random numbers range. In the case of a normal
distribution it is the standard deviation of the random numbers.

The function fills the destination array with uniformly or normally distributed random numbers.
See Also:
randu(), randn(), RNG: : fill().

2.2. Basic C Structures and Operations 75

The OpenCV Reference Manual, Release 2.3.3

RandInt

Returns a 32-bit unsigned integer and updates RNG.
C: unsigned int cvRandInt (CvRNG* rng)
Python: cv.RandInt(rng) — unsigned
Parameters
rng — CvRNG state initialized by RNG ().

The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG state. It is similar
to the rand() function from the C runtime library, except that OpenCV functions always generates a 32-bit random
number, regardless of the platform.

RandReal

Returns a floating-point random number and updates RNG.
C: double cvRandReal (CVRNG* rng)
Python: cv.RandReal(rng) — double
Parameters
rng — RNG state initialized by RNG ()

The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not included).

fromarray

Create a CvMat from an object that supports the array interface.
Python: cv.fromarray (object, allowND=False) — CvMat
Parameters
object — Any object that supports the array interface
allowND - If true, will return a CvMatND
If the object supports the array interface , return a CvMat or CvMatND, depending on allowND flag:

e If allowND = False, then the object’s array must be either 2D or 3D. If it is 2D, then the returned CvMat has
a single channel. If it is 3D, then the returned CvMat will have N channels, where N is the last dimension of the
array. In this case, N cannot be greater than OpenCV’s channel limit, CV_CN_MAX.

e If*‘allowND = True*‘, then fromarray returns a single-channel CvMatND with the same shape as the original
array.

For example, NumPy arrays support the array interface, so can be converted to OpenCV objects:

Note: In the new Python wrappers (cv2 module) the function is not needed, since cv2 can process Numpy arrays (and
this is the only supported array type).

76 Chapter 2. core. The Core Functionality

http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
http://numpy.scipy.org/

The OpenCV Reference Manual, Release 2.3.3

2.3 Dynamic Structures

The section describes OpenCV 1.x API for creating growable sequences and other dynamic data structures allocated
in CvMemStorage. If you use the new C++, Python, Java etc interface, you will unlikely need this functionality. Use
std: :vector or other high-level data structures.

CvMemStorage

struct CvMemStorage
A storage for various OpenCV dynamic data structures, such as CvSeq, CvSet etc.

CvMemBlock* bottom
the first memory block in the double-linked list of blocks

CvMemBlock* top
the current partially allocated memory block in the list of blocks

CvMemStorage* parent
the parent storage (if any) from which the new memory blocks are borrowed.

int free_space
number of free bytes in the top block

int block_size
the total size of the memory blocks

Memory storage is a low-level structure used to store dynamically growing data structures such as sequences, contours,
graphs, subdivisions, etc. It is organized as a list of memory blocks of equal size - bottom field is the beginning of
the list of blocks and top is the currently used block, but not necessarily the last block of the list. All blocks between
bottom and top, not including the latter, are considered fully occupied; all blocks between top and the last block, not
including top, are considered free and top itself is partly ocupied - free_space contains the number of free bytes
left in the end of top.

A new memory buffer that may be allocated explicitly by MemStorageAlloc() function or implicitly by higher-level
functions, such as SeqPush (), GraphAddEdge () etc.

The buffer is put in the end of already allocated space in the top memory block, if there is enough free space. After
allocation, free_space is decreased by the size of the allocated buffer plus some padding to keep the proper alignment.
When the allocated buffer does not fit into the available portion of top, the next storage block from the list is taken as
top and free_space is reset to the whole block size prior to the allocation.

If there are no more free blocks, a new block is allocated (or borrowed from the parent, see
CreateChildMemStorage()) and added to the end of list. Thus, the storage behaves as a stack with bottom in-
dicating bottom of the stack and the pair (top, free_space) indicating top of the stack. The stack top may be saved
via SaveMemStoragePos (), restored via RestoreMemStoragePos (), or reset via ClearMemStorage().

CvMemBlock

struct CvMemBlock

The structure CvMemBlock represents a single block of memory storage. The actual data in the memory blocks follows
the header.

2.3. Dynamic Structures 77

The OpenCV Reference Manual, Release 2.3.3

CvMemStoragePos

struct CvMemStoragePos

The structure stores the position in the memory storage. It is used by SaveMemStoragePos()
RestoreMemStoragePos ().

CvSeq

struct CvSeq

Dynamically growing sequence.

int flags
sequence flags, including the sequence signature (CV_SEQ_MAGIC_VAL or
CV_SET_MAGIC_VAL), type of the elements and some other information about the sequence.

int header_size
size of the sequence header. It should be sizeof(CvSeq) at minimum. See CreateSeq().

CvSeq* h_prev
CvSeq* h_next
CvSeq* v_prev

CvSeq* v_next
pointers to another sequences in a sequence tree. Sequence trees are used to store hierarchical
contour structures, retrieved by FindContours()

int total
the number of sequence elements

int elem_size
size of each sequence element in bytes

CvMemStorage* storage
memory storage where the sequence resides. It can be a NULL pointer.

CvSeqBlock* first
pointer to the first data block

and

The structure CvSeq is a base for all of OpenCV dynamic data structures. There are two types of sequences - dense
and sparse. The base type for dense sequences is CvSeq and such sequences are used to represent growable 1d arrays
- vectors, stacks, queues, and deques. They have no gaps in the middle - if an element is removed from the middle or
inserted into the middle of the sequence, the elements from the closer end are shifted. Sparse sequences have CvSet
as a base class and they are discussed later in more detail. They are sequences of nodes; each may be either occupied
or free as indicated by the node flag. Such sequences are used for unordered data structures such as sets of elements,
graphs, hash tables and so forth.

CvSlice

struct CvSlice

A sequence slice. In C++ interface the class Range should be used instead.

int start_index
inclusive start index of the sequence slice

int end_index
exclusive end index of the sequence slice

78

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

There are helper functions to construct the slice and to compute its length:
C: CvSlice cvSlice (int start, int end)

#define CV_WHOLE_SEQ_END_INDEX OX3Fffffff
#define CV_WHOLE SEQ cvSlice(O, CV_WHOLE SEQ_END_INDEX)

C: int cvSliceLength (CvSlice slice, const CvSeq* seq)
Calculates the sequence slice length

Some of functions that operate on sequences take a CvSlice slice parameter that is often set to the whole sequence
(CV_WHOLE_SEQ) by default. Either of the start_index and end_index may be negative or exceed the sequence
length. If they are equal, the slice is considered empty (i.e., contains no elements). Because sequences are treated
as circular structures, the slice may select a few elements in the end of a sequence followed by a few elements at
the beginning of the sequence. For example, cvSlice(-2, 3) in the case of a 10-element sequence will select a
5-element slice, containing the pre-last (8th), last (9th), the very first (Oth), second (1th) and third (2nd) elements. The
functions normalize the slice argument in the following way:

1. SliceLength() is called to determine the length of the slice,

2. start_index of the slice is normalized similarly to the argument of GetSeqElem() (i.e., negative indices are
allowed). The actual slice to process starts at the normalized start_index and lasts SliceLength() elements
(again, assuming the sequence is a circular structure).

If a function does not accept a slice argument, but you want to process only a part of the sequence, the sub-sequence
may be extracted using the SeqSlice() function, or stored into a continuous buffer with CvtSeqgToArray () (option-
ally, followed by MakeSeqgHeaderForArray()).

CvSet

struct CvSet

The structure CvSet is a base for OpenCV 1.x sparse data structures. It is derived from CvSeq and includes an
additional member free_elems - a list of free nodes. Every node of the set, whether free or not, is an element of the
underlying sequence. While there are no restrictions on elements of dense sequences, the set (and derived structures)
elements must start with an integer field and be able to fit CvSetElem structure, because these two fields (an integer
followed by a pointer) are required for the organization of a node set with the list of free nodes. If a node is free, the
flags field is negative (the most-significant bit, or MSB, of the field is set), and the next_free points to the next free
node (the first free node is referenced by the free_elems field of CvSet). And if a node is occupied, the flags field is
positive and contains the node index that may be retrieved using the (set_elem->flags & CV_SET_ELEM_IDX MASK)
expressions, the rest of the node content is determined by the user. In particular, the occupied nodes are not linked as
the free nodes are, so the second field can be used for such a link as well as for some different purpose. The macro
CV_IS_SET_ELEM(set_elem_ptr) can be used to determined whether the specified node is occupied or not.

Initially the set and the free node list are empty. When a new node is requested from the set, it is taken from the list of
free nodes, which is then updated. If the list appears to be empty, a new sequence block is allocated and all the nodes
within the block are joined in the list of free nodes. Thus, the total field of the set is the total number of nodes both
occupied and free. When an occupied node is released, it is added to the list of free nodes. The node released last will
be occupied first.

CvSet is used to represent graphs (CvGraph), sparse multi-dimensional arrays (CvSparseMat), and planar subdivisions
(CvSubdiv2D).

CvGraph

struct CvGraph

2.3. Dynamic Structures 79

The OpenCV Reference Manual, Release 2.3.3

The structure CvGraph is a base for graphs used in OpenCV 1.x. It inherits from CvSet, that is, it is considered as a
set of vertices. Besides, it contains another set as a member, a set of graph edges. Graphs in OpenCV are represented
using adjacency lists format.

CvGraphScanner

struct CvGraphScanner

The structure CvGraphScanner is used for depth-first graph traversal. See discussion of the functions below.

CvTreeNodelterator

struct CvTreeNodeIterator

The structure CvTreeNodeIterator is used to traverse trees of sequences.

ClearGraph

Clears a graph.
C: void cvClearGraph (CvGraph* graph)
Parameters
graph — Graph

The function removes all vertices and edges from a graph. The function has O(1) time complexity.

ClearMemStorage

Clears memory storage.
C: void cvClearMemStorage (CvMemStorage* storage)
Parameters
storage — Memory storage

The function resets the top (free space boundary) of the storage to the very beginning. This function does not deallocate
any memory. If the storage has a parent, the function returns all blocks to the parent.

ClearSeq

Clears a sequence.
C: void cvClearSeq(CvSeq* seq)
Parameters
seq — Sequence

The function removes all elements from a sequence. The function does not return the memory to the storage block, but
this memory is reused later when new elements are added to the sequence. The function has ‘O(1)’ time complexity.

80 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Note: It is impossible to deallocate a sequence, i.e. free space in the memory storage occupied by the sequence.
Instead, call ClearMemStorage() or ReleaseMemStorage() from time to time somewhere in a top-level processing
loop.

ClearSet

Clears a set.
C: void cvClearSet (CvSet* setHeader)
Parameters
setHeader — Cleared set

The function removes all elements from set. It has O(1) time complexity.

CloneGraph

Clones a graph.
C: CvGraph* cvCloneGraph (const CvGraph* graph, CvMemStorage* storage)
Parameters
graph — The graph to copy
storage — Container for the copy

The function creates a full copy of the specified graph. If the graph vertices or edges have pointers to some external
data, it can still be shared between the copies. The vertex and edge indices in the new graph may be different from the
original because the function defragments the vertex and edge sets.

CloneSeq

Creates a copy of a sequence.
C: CvSeq* cvCloneSeq (const CvSeq* seq, CvMemStorage* storage=NULL)
Python: cv.CloneSeq(seq, storage) — None
Parameters
seq — Sequence

storage — The destination storage block to hold the new sequence header and the copied
data, if any. If it is NULL, the function uses the storage block containing the input sequence.

The function makes a complete copy of the input sequence and returns it.

The call cvCloneSeq(seq, storage) isequivalent to cvSeqSlice(seq, CV_WHOLE_SEQ, storage, 1).

CreateChildMemStorage

Creates child memory storage.
C: CvMemStorage* cvCreateChildMemStorage (CvMemStorage* parent)

Parameters

2.3. Dynamic Structures 81

The OpenCV Reference Manual, Release 2.3.3

parent — Parent memory storage

The function creates a child memory storage that is similar to simple memory storage except for the differences in the
memory allocation/deallocation mechanism. When a child storage needs a new block to add to the block list, it tries to
get this block from the parent. The first unoccupied parent block available is taken and excluded from the parent block
list. If no blocks are available, the parent either allocates a block or borrows one from its own parent, if any. In other
words, the chain, or a more complex structure, of memory storages where every storage is a child/parent of another is
possible. When a child storage is released or even cleared, it returns all blocks to the parent. In other aspects, child
storage is the same as simple storage.

Child storage is useful in the following situation. Imagine that the user needs to process dynamic data residing in a
given storage area and put the result back to that same storage area. With the simplest approach, when temporary data
is resided in the same storage area as the input and output data, the storage area will look as follows after processing:

Dynamic data processing without using child storage

Bt Dhapnar. Rorage

»
Tenpor ary Dita | Crrbaze) Chatprat Drata

That is, garbage appears in the middle of the storage. However, if one creates a child memory storage at the beginning
of processing, writes temporary data there, and releases the child storage at the end, no garbage will appear in the
source/destination storage:

Dynamic data processing using a child storage

Bt/ Chatpazt Sorage

-

Wil be Tetumrie d tp S DaTert

et
-

82 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

CreateGraph

Creates an empty graph.

C: CvGraph* cvCreateGraph (int graph_flags, int header_size, int vtx_size, int edge_size, CvMemStorage*
storage)

Parameters

graph_flags — Type of the created graph. Usually, it is either CV_SEQ_KIND_GRAPH
for generic unoriented graphs and CV_SEQ_KIND_GRAPH | CV_GRAPH_FLAG_ORIENTED for
generic oriented graphs.

header_size — Graph header size; may not be less than sizeof (CvGraph)

vtx_size — Graph vertex size; the custom vertex structure must start with CvGraphVtx (use
CV_GRAPH_VERTEX_FIELDS())

edge_size — Graph edge size; the custom edge structure must start with CvGraphEdge (use
CV_GRAPH_EDGE_FIELDS())

storage — The graph container

The function creates an empty graph and returns a pointer to it.

CreateGraphScanner

Creates structure for depth-first graph traversal.
C: CvGraphScanner* cvCreateGraphScanner (CvGraph* graph, CvGraphVtx* vtx=NULL, int
mask=CV_GRAPH_ALL_ITEMS)
Parameters
graph — Graph
vtx — Initial vertex to start from. If NULL, the traversal starts from the first vertex (a vertex

with the minimal index in the sequence of vertices).

mask — Event mask indicating which events are of interest to the user (where
NextGraphItem() function returns control to the user) It can be CV_GRAPH_ALL_ITEMS
(all events are of interest) or a combination of the following flags:

— CV_GRAPH_VERTEX stop at the graph vertices visited for the first time

— CV_GRAPH_TREE_EDGE stop at tree edges (tree edge is the edge connecting the
last visited vertex and the vertex to be visited next)

— CV_GRAPH_BACK_EDGE stop at back edges (back edge is an edge connecting the
last visited vertex with some of its ancestors in the search tree)

— CV_GRAPH_FORWARD_EDGE stop at forward edges (forward edge is an edge
conecting the last visited vertex with some of its descendants in the search tree. The
forward edges are only possible during oriented graph traversal)

— CV_GRAPH_CROSS_EDGE stop at cross edges (cross edge is an edge connecting
different search trees or branches of the same tree. The cross edges are only possible
during oriented graph traversal)

— CV_GRAPH_ANY_EDGE stop at any edge (tree, back, forward , and cross
edges)

2.3. Dynamic Structures 83

The OpenCV Reference Manual, Release 2.3.3

— CV_GRAPH_NEW_TREE stop in the beginning of every new search tree. When the
traversal procedure visits all vertices and edges reachable from the initial vertex (the vis-
ited vertices together with tree edges make up a tree), it searches for some unvisited vertex
in the graph and resumes the traversal process from that vertex. Before starting a new tree
(including the very first tree when cvNextGraphItem is called for the first time) it gener-
ates a CV_GRAPH_NEW_TREE event. For unoriented graphs, each search tree corresponds
to a connected component of the graph.

— CV_GRAPH_BACKTRACKING stop at every already visited vertex during backtrack-
ing - returning to already visited vertexes of the traversal tree.

The function creates a structure for depth-first graph traversal/search. The initialized structure is used in the
NextGraphItem() function - the incremental traversal procedure.

CreateMemStorage

Creates memory storage.

C: CvMemStorage* cvCreateMemStorage (int blockSize=0)

Python: cv.CreateMemStorage (blockSize=0) — memstorage
Parameters

blockSize — Size of the storage blocks in bytes. If it is 0, the block size is set to a default
value - currently it is about 64K.

The function creates an empty memory storage. See CvMemStorage description.

CreateSeq

Creates a sequence.
C: CvSeq* cvCreateSeq(int seqFlags, int headerSize, int elemSize, CvMemStorage* storage)
Parameters

seqFlags — Flags of the created sequence. If the sequence is not passed to any function
working with a specific type of sequences, the sequence value may be set to 0, otherwise the
appropriate type must be selected from the list of predefined sequence types.

headerSize — Size of the sequence header; must be greater than or equal to sizeof (CvSeq)
. If a specific type or its extension is indicated, this type must fit the base type header.

elemSize — Size of the sequence elements in bytes. The size must be consistent with the
sequence type. For example, for a sequence of points to be created, the element type
CV_SEQ_ELTYPE_POINT should be specified and the parameter elemSize must be equal
to sizeof(CvPoint) .

storage — Sequence location

The function creates a sequence and returns the pointer to it. The function allocates the sequence header in the storage
block as one continuous chunk and sets the structure fields flags , elemSize , headerSize , and storage to passed
values, sets delta_elems to the default value (that may be reassigned using the SetSeqBlockSize () function), and
clears other header fields, including the space following the first sizeof (CvSeq) bytes.

84 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

CreateSet

Creates an empty set.
C: CvSet* cvCreateSet (int set_flags, int header_size, int elem_size, CvMemStorage* storage)
Parameters
set_flags — Type of the created set
header_size — Set header size; may not be less than sizeof (CvSet)
elem_size — Set element size; may not be less than CvSetElem
storage — Container for the set

The function creates an empty set with a specified header size and element size, and returns the pointer to the set. This
function is just a thin layer on top of CreateSeq().

CvtSeqToArray

Copies a sequence to one continuous block of memory.
C: void* cvCvtSeqToArray (const CvSeq* seq, void* elements, CvSlice slice=CV_WHOLE_SEQ)
Parameters
seq — Sequence

elements — Pointer to the destination array that must be large enough. It should be a pointer
to data, not a matrix header.

slice — The sequence portion to copy to the array

The function copies the entire sequence or subsequence to the specified buffer and returns the pointer to the buffer.

EndWriteSeq

Finishes the process of writing a sequence.
C: CvSeq* cvEndWriteSeq(CvSeqWriter* writer)
Parameters
writer — Writer state

The function finishes the writing process and returns the pointer to the written sequence. The function also truncates
the last incomplete sequence block to return the remaining part of the block to memory storage. After that, the
sequence can be read and modified safely. See StartWriteSeq() and StartAppendToSeq()

FindGraphEdge

Finds an edge in a graph.
C: CvGraphEdge* cvFindGraphEdge (const CvGraph* graph, int start_idx, int end_idx)
Parameters
graph — Graph

start_idx — Index of the starting vertex of the edge

2.3. Dynamic Structures 85

The OpenCV Reference Manual, Release 2.3.3

end_idx — Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

#define cvGraphFindEdge cvFindGraphEdge

The function finds the graph edge connecting two specified vertices and returns a pointer to it or NULL if the edge
does not exist.

FindGraphEdgeByPtr

Finds an edge in a graph by using its pointer.

C: CvGraphEdge* cvFindGraphEdgeByPtr (const CvGraph* graph, const CvGraphVtx* startVtx, const Cv-
GraphVtx* endVtx)

Parameters
graph — Graph
startVtx — Pointer to the starting vertex of the edge

endVtx — Pointer to the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr

The function finds the graph edge connecting two specified vertices and returns pointer to it or NULL if the edge does
not exists.

FlushSeqWriter

Updates sequence headers from the writer.
C: void cvFlushSegWriter (CvSeqWriter* writer)
Parameters
writer — Writer state

The function is intended to enable the user to read sequence elements, whenever required, during the writing process,
e.g., in order to check specific conditions. The function updates the sequence headers to make reading from the
sequence possible. The writer is not closed, however, so that the writing process can be continued at any time. If an
algorithm requires frequent flushes, consider using SeqPush () instead.

GetGraphVix

Finds a graph vertex by using its index.
C: CvGraphVtx* cvGetGraphVtx (CvGraph* graph, int vtx_idx)
Parameters
graph — Graph
vtx_idx — Index of the vertex

The function finds the graph vertex by using its index and returns the pointer to it or NULL if the vertex does not
belong to the graph.

86 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

GetSegElem

Returns a pointer to a sequence element according to its index.
C: char* cvGetSeqElem(const CvSeq* seq, int index)
Parameters

seq — Sequence

index — Index of element
#define CV_GET_SEQ_ELEM(TYPE, seq, index) (TYPEx)cvGetSeqElem((CvSeqgx)(seq), (index))
The function finds the element with the given index in the sequence and returns the pointer to it. If the element
is not found, the function returns 0. The function supports negative indices, where -1 stands for the last sequence
element, -2 stands for the one before last, etc. If the sequence is most likely to consist of a single sequence block or
the desired element is likely to be located in the first block, then the macro CV_GET_SEQ_ELEM(elemType, seq,
index) should be used, where the parameter elemType is the type of sequence elements (CvPoint for example),
the parameter seq is a sequence, and the parameter index is the index of the desired element. The macro checks first
whether the desired element belongs to the first block of the sequence and returns it if it does; otherwise the macro

calls the main function GetSeqElem . Negative indices always cause the GetSeqElem() call. The function has O(1)
time complexity assuming that the number of blocks is much smaller than the number of elements.

GetSeqgReaderPos

Returns the current reader position.
C: int cvGetSeqReaderPos (CvSeqReader* reader)
Parameters
reader — Reader state

The function returns the current reader position (within O ... reader->seq->total - 1).

GetSetElem

Finds a set element by its index.
C: CvSetElem* cvGetSetElem(const CvSet* setHeader, int index)
Parameters
setHeader — Set
index — Index of the set element within a sequence

The function finds a set element by its index. The function returns the pointer to it or O if the index is invalid or the
corresponding node is free. The function supports negative indices as it uses GetSeqElem() to locate the node.

GraphAddEdge

Adds an edge to a graph.

C: int cvGraphAddEdge (CvGraph* graph, int start_idx, int end_idx, const CvGraphEdge* edge=NULL, Cv-
GraphEdge** inserted_edge=NULL)

Parameters

2.3. Dynamic Structures 87

The OpenCV Reference Manual, Release 2.3.3

graph — Graph
start_idx — Index of the starting vertex of the edge

end_idx — Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

edge — Optional input parameter, initialization data for the edge
inserted_edge — Optional output parameter to contain the address of the inserted edge

The function connects two specified vertices. The function returns 1 if the edge has been added successfully, O if
the edge connecting the two vertices exists already and -1 if either of the vertices was not found, the starting and the
ending vertex are the same, or there is some other critical situation. In the latter case (i.e., when the result is negative),
the function also reports an error by default.

GraphAddEdgeByPtr

Adds an edge to a graph by using its pointer.

C: int cvGraphAddEdgeByPtr (CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx, const Cv-
GraphEdge* edge=NULL, CvGraphEdge** inserted_edge=NULL)

Parameters
graph — Graph
start_vtx — Pointer to the starting vertex of the edge

end_vtx — Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

edge — Optional input parameter, initialization data for the edge

inserted_edge — Optional output parameter to contain the address of the inserted edge
within the edge set

The function connects two specified vertices. The function returns 1 if the edge has been added successfully, O if the
edge connecting the two vertices exists already, and -1 if either of the vertices was not found, the starting and the
ending vertex are the same or there is some other critical situation. In the latter case (i.e., when the result is negative),
the function also reports an error by default.

GraphAddVix

Adds a vertex to a graph.

C: int cvGraphAddVtx (CvGraph* graph, const CvGraphVtx* vtx=NULL, CvGraphVtx** in-
serted_vtx=NULL)

Parameters
graph — Graph

vtx — Optional input argument used to initialize the added vertex (only user-defined fields
beyond sizeof (CvGraphVtx) are copied)

inserted_vertex — Optional output argument. If not NULL , the address of the new vertex is
written here.

The function adds a vertex to the graph and returns the vertex index.

88 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

GraphEdgeldx

Returns the index of a graph edge.
C: int cvGraphEdgeIdx (CvGraph* graph, CvGraphEdge* edge)
Parameters
graph — Graph
edge — Pointer to the graph edge

The function returns the index of a graph edge.

GraphRemoveEdge

Removes an edge from a graph.
C: void cvGraphRemoveEdge (CvGraph* graph, int start_idx, int end_idx)
Parameters
graph — Graph
start_idx — Index of the starting vertex of the edge

end_idx — Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

The function removes the edge connecting two specified vertices. If the vertices are not connected [in that order], the
function does nothing.

GraphRemoveEdgeByPtr

Removes an edge from a graph by using its pointer.
C: void cvGraphRemoveEdgeByPtr (CvGraph* graph, CvGraphVitx* start_vtx, CvGraphVtx* end_vtx)
Parameters
graph — Graph
start_vtx — Pointer to the starting vertex of the edge

end_vtx — Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

The function removes the edge connecting two specified vertices. If the vertices are not connected [in that order], the
function does nothing.

GraphRemoveVitx

Removes a vertex from a graph.
C: int cvGraphRemoveVtx (CvGraph* graph, int index)
Parameters
graph — Graph

vtx_idx — Index of the removed vertex

2.3. Dynamic Structures 89

The OpenCV Reference Manual, Release 2.3.3

The function removes a vertex from a graph together with all the edges incident to it. The function reports an error if
the input vertex does not belong to the graph. The return value is the number of edges deleted, or -1 if the vertex does
not belong to the graph.

GraphRemoveVtxByPtr

Removes a vertex from a graph by using its pointer.
C: int cvGraphRemoveVtxByPtr (CvGraph* graph, CvGraphVtx* vtx)
Parameters
graph — Graph
vtx — Pointer to the removed vertex

The function removes a vertex from the graph by using its pointer together with all the edges incident to it. The
function reports an error if the vertex does not belong to the graph. The return value is the number of edges deleted,
or -1 if the vertex does not belong to the graph.

GraphVtxDegree

Counts the number of edges indicent to the vertex.
C: int cvGraphVtxDegree (const CvGraph* graph, int vtxIdx)
Parameters
graph — Graph
vtxIdx — Index of the graph vertex

The function returns the number of edges incident to the specified vertex, both incoming and outgoing. To count the
edges, the following code is used:

CvGraphEdge* edge = vertex->first; int count = 0;
while(edge)
{
edge = CV_NEXT_GRAPH_EDGE(edge, vertex);
count++;

}

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the edge incident to vertex that follows after edge .

GraphVitxDegreeByPtr

Finds an edge in a graph.
C: int cvGraphVtxDegreeByPtr (const CvGraph* graph, const CvGraphVix* vtx)
Parameters
graph — Graph
vtx — Pointer to the graph vertex

The function returns the number of edges incident to the specified vertex, both incoming and outcoming.

920 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

GraphVixldx

Returns the index of a graph vertex.
C: int cvGraphVtxIdx (CvGraph* graph, CvGraphVtx* vtx)
Parameters
graph — Graph
vtx — Pointer to the graph vertex

The function returns the index of a graph vertex.

InitTreeNodelterator

Initializes the tree node iterator.
C: void cvInitTreeNodeIterator (CvTreeNodelterator* tree_iterator, const void* first, int max_level)
Parameters
tree_iterator — Tree iterator initialized by the function
first — The initial node to start traversing from

max_level — The maximal level of the tree (first node assumed to be at the first level) to
traverse up to. For example, 1 means that only nodes at the same level as first should be
visited, 2 means that the nodes on the same level as first and their direct children should
be visited, and so forth.

The function initializes the tree iterator. The tree is traversed in depth-first order.

InsertNodelntoTree

Adds a new node to a tree.
C: void cvInsertNodeIntoTree(void* node, void* parent, void* frame)
Parameters
node — The inserted node
parent — The parent node that is already in the tree

frame — The top level node. If parent and frame are the same, the v_prev field of node is
set to NULL rather than parent .

The function adds another node into tree. The function does not allocate any memory, it can only modify links of the
tree nodes.

MakeSeqHeaderForArray

Constructs a sequence header for an array.

C: CvSeq* cvMakeSeqHeaderForArray (int seq_type, int header_size, int elem_size, void* elements, int
total, CvSeq* seq, CvSeqBlock* block)

Parameters

seq_type — Type of the created sequence

2.3. Dynamic Structures 91

The OpenCV Reference Manual, Release 2.3.3

header_size — Size of the header of the sequence. Parameter sequence must point to the
structure of that size or greater

elem_size — Size of the sequence elements
elements — Elements that will form a sequence

total — Total number of elements in the sequence. The number of array elements must be
equal to the value of this parameter.

seq — Pointer to the local variable that is used as the sequence header
block — Pointer to the local variable that is the header of the single sequence block

The function initializes a sequence header for an array. The sequence header as well as the sequence block are allocated
by the user (for example, on stack). No data is copied by the function. The resultant sequence will consists of a single
block and have NULL storage pointer; thus, it is possible to read its elements, but the attempts to add elements to the
sequence will raise an error in most cases.

MemStorageAlloc

Allocates a memory buffer in a storage block.
C: void* cvMemStorageAlloc (CvMemStorage* storage, size_t size)
Parameters
storage — Memory storage
size — Buffer size

The function allocates a memory buffer in a storage block. The buffer size must not exceed the storage block size,
otherwise a runtime error is raised. The buffer address is aligned by CV_STRUCT_ALIGN=sizeof (double) (for the
moment) bytes.

MemStorageAllocString

Allocates a text string in a storage block.
C: CvString cvMemStorageAllocString (CvMemStorage* storage, const char* ptr, int len=-1)
Parameters
storage — Memory storage
ptr — The string

len — Length of the string (not counting the ending NUL) . If the parameter is negative, the
function computes the length.

typedef struct CvString

{
int len;
char* ptr;
}
CvString;

The function creates copy of the string in memory storage. It returns the structure that contains user-passed or com-
puted length of the string and pointer to the copied string.

92 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

NextGraphltem

Executes one or more steps of the graph traversal procedure.
C: int cvNextGraphItem(CvGraphScanner* scanner)
Parameters
scanner — Graph traversal state. It is updated by this function.

The function traverses through the graph until an event of interest to the user (that is, an event, specified in the mask in
the CreateGraphScanner () call) is met or the traversal is completed. In the first case, it returns one of the events listed
in the description of the mask parameter above and with the next call it resumes the traversal. In the latter case, it returns
CV_GRAPH_OVER (-1). When the event is CV_GRAPH_VERTEX , CV_GRAPH_BACKTRACKING , or CV_GRAPH_NEW_TREE ,
the currently observed vertex is stored in scanner-:math: ‘>‘vtx . And if the event is edge-related, the edge itself is
stored at scanner-:math: ‘>‘edge , the previously visited vertex - at scanner- :math: ‘>‘vtx and the other ending
vertex of the edge - at scanner-:math: ‘>‘dst .

NextTreeNode

Returns the currently observed node and moves the iterator toward the next node.
C: void* cvNextTreeNode (CvTreeNodelterator* tree_iterator)
Parameters
tree_iterator — Tree iterator initialized by the function

The function returns the currently observed node and then updates the iterator - moving it toward the next node. In
other words, the function behavior is similar to the *p++ expression on a typical C pointer or C++ collection iterator.
The function returns NULL if there are no more nodes.

PrevTreeNode

Returns the currently observed node and moves the iterator toward the previous node.
C: void* cvPrevTreeNode (CvTreeNodelterator* tree_iterator)
Parameters
tree_iterator — Tree iterator initialized by the function

The function returns the currently observed node and then updates the iterator - moving it toward the previous node. In
other words, the function behavior is similar to the *p- - expression on a typical C pointer or C++ collection iterator.
The function returns NULL if there are no more nodes.

ReleaseGraphScanner

Completes the graph traversal procedure.
C: void cvReleaseGraphScanner (CvGraphScanner** scanner)
Parameters
scanner — Double pointer to graph traverser

The function completes the graph traversal procedure and releases the traverser state.

2.3. Dynamic Structures 93

The OpenCV Reference Manual, Release 2.3.3

ReleaseMemStorage

Releases memory storage.
C: void cvReleaseMemStorage (CvMemStorage** storage)
Parameters
storage — Pointer to the released storage

The function deallocates all storage memory blocks or returns them to the parent, if any. Then it deallocates the storage
header and clears the pointer to the storage. All child storage associated with a given parent storage block must be
released before the parent storage block is released.

RestoreMemStoragePos

Restores memory storage position.
C: void cvRestoreMemStoragePos (CvMemStorage* storage, CvMemStoragePos* pos)
Parameters
storage — Memory storage
pos — New storage top position

The function restores the position of the storage top from the parameter pos . This function and the function
cvClearMemStorage are the only methods to release memory occupied in memory blocks. Note again that there
is no way to free memory in the middle of an occupied portion of a storage block.

SaveMemStoragePos

Saves memory storage position.
C: void cvSaveMemStoragePos (const CvMemStorage* storage, CvMemStoragePos* pos)
Parameters
storage — Memory storage
pos — The output position of the storage top

The function saves the current position of the storage top to the parameter pos . The function
cvRestoreMemStoragePos can further retrieve this position.

SeqElemldx

Returns the index of a specific sequence element.
C: int cvSeqElemIdx (const CvSeq* seq, const void* element, CvSeqBlock** block=NULL)
Parameters
seq — Sequence
element — Pointer to the element within the sequence

block — Optional argument. If the pointer is not NULL , the address of the sequence block
that contains the element is stored in this location.

The function returns the index of a sequence element or a negative number if the element is not found.

94 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Seglnsert

Inserts an element in the middle of a sequence.
C: char* cvSeqInsert(CvSeq* seq, int beforeIndex, void* element=NULL)
Parameters
seq — Sequence

beforeIndex — Index before which the element is inserted. Inserting before 0 (the min-
imal allowed value of the parameter) is equal to SeqPushFront() and inserting before
seq->total (the maximal allowed value of the parameter) is equal to SeqPush() .

element — Inserted element

The function shifts the sequence elements from the inserted position to the nearest end of the sequence and copies the
element content there if the pointer is not NULL. The function returns a pointer to the inserted element.

SeqglnsertSlice

Inserts an array in the middle of a sequence.
C: void cvSeqInsertSlice(CvSeq* seq, int beforeIndex, const CvArr* fromArr)
Parameters
seq — Sequence
beforeIndex — Index before which the array is inserted
fromArr — The array to take elements from

The function inserts all fromArr array elements at the specified position of the sequence. The array fromArr can be a
matrix or another sequence.

Seqlnvert

Reverses the order of sequence elements.
C: void cvSeqInvert(CvSeq* seq)
Parameters
seq — Sequence

The function reverses the sequence in-place - the first element becomes the last one, the last element becomes the first
one and so forth.

SeqPop

Removes an element from the end of a sequence.
C: void cvSeqPop (CvSeq* seq, void* element=NULL)
Parameters
seq — Sequence

element — Optional parameter . If the pointer is not zero, the function copies the removed
element to this location.

2.3. Dynamic Structures 95

The OpenCV Reference Manual, Release 2.3.3

The function removes an element from a sequence. The function reports an error if the sequence is already empty. The
function has O(1) complexity.

SeqPopFront

Removes an element from the beginning of a sequence.
C: void cvSeqPopFront (CvSeq* seq, void* element=NULL)
Parameters
seq — Sequence

element — Optional parameter. If the pointer is not zero, the function copies the removed
element to this location.

The function removes an element from the beginning of a sequence. The function reports an error if the sequence is
already empty. The function has O(1) complexity.

SeqPopMulti

Removes several elements from either end of a sequence.
C: void cvSeqPopMulti (CvSeq* seq, void* elements, int count, int in_front=0)
Parameters
seq — Sequence
elements — Removed elements
count — Number of elements to pop
in_front — The flags specifying which end of the modified sequence.
— CV_BACK the elements are added to the end of the sequence
— CV_FRONT the elements are added to the beginning of the sequence

The function removes several elements from either end of the sequence. If the number of the elements to be removed
exceeds the total number of elements in the sequence, the function removes as many elements as possible.

SeqPush

Adds an element to the end of a sequence.
C: char* cvSeqPush(CvSeq* seq, void* element=NULL)
Parameters
seq — Sequence
element — Added element

The function adds an element to the end of a sequence and returns a pointer to the allocated element. If the input
element is NULL, the function simply allocates a space for one more element.

The following code demonstrates how to create a new sequence using this function:

96 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq+ seq = cvCreateSeq(CV_32SCl, /* sequence of integer elements x*/
sizeof(CvSeq), /* header size - no extra fields =/
sizeof (int), /x* element size x/
storage /* the container storage x*/);
int i;
for(i =0; i < 100; i++)
{
int* added = (intx)cvSeqPush(seq, &i);
printf("

/* release memory storage in the end x/
cvReleaseMemStorage(&storage);

The function has O(1) complexity, but there is a faster method for writing large sequences (see StartWriteSeq() and
related functions).

SeqPushFront

Adds an element to the beginning of a sequence.
C: char* cvSeqPushFront (CvSeq* seq, void* element=NULL)
Parameters
seq — Sequence
element — Added element

The function is similar to SeqPush () but it adds the new element to the beginning of the sequence. The function has
O(1) complexity.

SeqPushMulti

Pushes several elements to either end of a sequence.
C: void cvSeqPushMulti(CvSeq* seq, void* elements, int count, int in_front=0)
Parameters
seq — Sequence
elements — Added elements
count — Number of elements to push
in_front — The flags specifying which end of the modified sequence.
— CV_BACK the elements are added to the end of the sequence
— CV_FRONT the elements are added to the beginning of the sequence

The function adds several elements to either end of a sequence. The elements are added to the sequence in the same
order as they are arranged in the input array but they can fall into different sequence blocks.

2.3. Dynamic Structures 97

The OpenCV Reference Manual, Release 2.3.3

SeqRemove

Removes an element from the middle of a sequence.
C: void cvSeqRemove (CvSeq* seq, int index)
Parameters
seq — Sequence
index — Index of removed element

The function removes elements with the given index. If the index is out of range the function reports an error. An
attempt to remove an element from an empty sequence is a special case of this situation. The function removes an
element by shifting the sequence elements between the nearest end of the sequence and the index -th position, not
counting the latter.

SeqRemoveSlice

Removes a sequence slice.
C: void cvSeqRemoveSlice (CvSeq* seq, CvSlice slice)
Parameters
seq — Sequence
slice — The part of the sequence to remove

The function removes a slice from the sequence.

SeqSearch

Searches for an element in a sequence.

C: char* cvSeqSearch(CvSeq* seq, const void* elem, CvCmpFunc func, int is_sorted, int* elem_idx, void*
userdata=NULL)

Parameters
seq — The sequence
elem — The element to look for

func — The comparison function that returns negative, zero or positive value depending on
the relationships among the elements (see also SeqSort())

is_sorted — Whether the sequence is sorted or not
elem_idx — Output parameter; index of the found element

userdata — The user parameter passed to the compasion function; helps to avoid global
variables in some cases

/*a<b?-1:a>b?1:0x/
typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata);

The function searches for the element in the sequence. If the sequence is sorted, a binary O(log(N)) search is used;
otherwise, a simple linear search is used. If the element is not found, the function returns a NULL pointer and the
index is set to the number of sequence elements if a linear search is used, or to the smallest index 1, seq(i)>elem.

98 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

SeqSlice

Makes a separate header for a sequence slice.

C: CvSeq* cvSeqSlice(const CvSeq* seq, CvSlice slice, CvMemStorage* storage=NULL, int copy_data=0
)

Parameters
seq — Sequence
slice — The part of the sequence to be extracted

storage — The destination storage block to hold the new sequence header and the copied
data, if any. If it is NULL, the function uses the storage block containing the input sequence.

copy_data — The flag that indicates whether to copy the elements of the extracted slice (
copy_data!=0) or not (copy_data=0)

The function creates a sequence that represents the specified slice of the input sequence. The new sequence either
shares the elements with the original sequence or has its own copy of the elements. So if one needs to process a part
of sequence but the processing function does not have a slice parameter, the required sub-sequence may be extracted
using this function.

SeqSort

Sorts sequence element using the specified comparison function.
C: void cvSeqSort (CvSeq* seq, CvCmpFunc func, void* userdata=NULL)
Parameters
seq — The sequence to sort

func — The comparison function that returns a negative, zero, or positive value depending
on the relationships among the elements (see the above declaration and the example below)
- a similar function is used by gsort from C runline except that in the latter, userdata is
not used

userdata — The user parameter passed to the compasion function; helps to avoid global
variables in some cases

/*a<b?-1:a>b7?721:0 %/
typedef int (CV_CDECL* CvCmpFunc) (const void* a, const void* b, voidx userdata);
The function sorts the sequence in-place using the specified criteria. Below is an example of using this function:

/* Sort 2d points in top-to-bottom left-to-right order */
static int cmp_func(const void+ _a, const void+ _b, void+ userdata)

{
CvPoint* a = (CvPointx)_a;
CvPointx b = (CvPointx)_b;
int y_diff = a->y - b->y;
int x_diff = a->x - b->x;
return y_diff ? y_diff : x_diff;
}

CvMemStoragex storage = cvCreateMemStorage(0);
CvSeq* seq = cvCreateSeq(CV_325C2, sizeof(CvSeq), sizeof(CvPoint), storage);

2.3. Dynamic Structures 99

The OpenCV Reference Manual, Release 2.3.3

int i;

for(i =0; i < 10; i++)

{
CvPoint pt;
pt.x = rand()
pt.y = rand()
cvSeqPush(seq, &pt);
}

cvSeqSort(seq, cmp_func, 0 /* userdata is not used here */);

/* print out the sorted sequence x/

for(i = 0; i < seqg->total; i++)

{
CvPoint* pt = (CvPointx*)cvSeqElem(seq, i);
printf("(

}

cvReleaseMemStorage(&storage);

SetAdd

Occupies a node in the set.
C: int cvSetAdd (CvSet* setHeader, CvSetElem* elem=NULL, CvSetElem** inserted_elem=NULL)
Parameters
setHeader — Set

elem — Optional input argument, an inserted element. If not NULL, the function copies the
data to the allocated node (the MSB of the first integer field is cleared after copying).

inserted_elem — Optional output argument; the pointer to the allocated cell

The function allocates a new node, optionally copies input element data to it, and returns the pointer and the index
to the node. The index value is taken from the lower bits of the flags field of the node. The function has O(1)
complexity; however, there exists a faster function for allocating set nodes (see SetNew()).

SetNew

Adds an element to a set (fast variant).
C: CvSetElem* cvSetNew(CvSet* setHeader)
Parameters
setHeader — Set

The function is an inline lightweight variant of SetAdd () . It occupies a new node and returns a pointer to it rather
than an index.

SetRemove

Removes an element from a set.

C: void cvSetRemove (CvSet* setHeader, int index)

100 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Parameters
setHeader — Set
index — Index of the removed element

The function removes an element with a specified index from the set. If the node at the specified location is not
occupied, the function does nothing. The function has O(1) complexity; however, SetRemoveByPtr() provides a
quicker way to remove a set element if it is located already.

SetRemoveByPtr

Removes a set element based on its pointer.
C: void cvSetRemoveByPtr(CvSet* setHeader, void* elem)
Parameters
setHeader — Set
elem — Removed element

The function is an inline lightweight variant of SetRemove () that requires an element pointer. The function does not
check whether the node is occupied or not - the user should take care of that.

SetSeqBlockSize

Sets up sequence block size.
C: void cvSetSeqBlockSize (CvSeq* seq, int deltaElems)
Parameters
seq — Sequence
deltaElems — Desirable sequence block size for elements

The function affects memory allocation granularity. When the free space in the sequence buffers has run out, the
function allocates the space for deltaElems sequence elements. If this block immediately follows the one previously
allocated, the two blocks are concatenated; otherwise, a new sequence block is created. Therefore, the bigger the
parameter is, the lower the possible sequence fragmentation, but the more space in the storage block is wasted. When
the sequence is created, the parameter deltaElems is set to the default value of about 1K. The function can be called
any time after the sequence is created and affects future allocations. The function can modify the passed value of the
parameter to meet memory storage constraints.

SetSeqReaderPos

Moves the reader to the specified position.
C: void cvSetSeqReaderPos (CvSeqReader* reader, int index, int is_relative=0)
Parameters
reader — Reader state

index — The destination position. If the positioning mode is used (see the next parameter),
the actual position will be index mod reader->seq->total .

is_relative — If it is not zero, then index is a relative to the current position

The function moves the read position to an absolute position or relative to the current position.

2.3. Dynamic Structures 101

The OpenCV Reference Manual, Release 2.3.3

StartAppendToSeq

Initializes the process of writing data to a sequence.
C: void cvStartAppendToSeq(CvSeq* seq, CvSeqWriter* writer)
Parameters
seq — Pointer to the sequence
writer — Writer state; initialized by the function

The function initializes the process of writing data to a sequence. Written elements are added to the end of the
sequence by using the CV_WRITE_SEQ_ELEM(written_elem, writer) macro. Note that during the writing pro-
cess, other operations on the sequence may yield an incorrect result or even corrupt the sequence (see description of
FlushSegWriter() , which helps to avoid some of these problems).

StartReadSeq

Initializes the process of sequential reading from a sequence.
C: void cvStartReadSeq (const CvSeq* seq, CvSeqReader* reader, int reverse=0)
Parameters
seq — Sequence
reader — Reader state; initialized by the function

reverse — Determines the direction of the sequence traversal. If reverse is 0, the reader is
positioned at the first sequence element; otherwise it is positioned at the last element.

The function initializes the reader state. After that, all the sequence elements from the first one down to the last
one can be read by subsequent calls of the macro CV_READ_SEQ_ELEM(read_elem, reader) in the case of for-
ward reading and by using CV_REV_READ_SEQ_ELEM(read_elem, reader) in the case of reverse reading. Both
macros put the sequence element to read_elem and move the reading pointer toward the next element. A circu-
lar structure of sequence blocks is used for the reading process, that is, after the last element has been read by
the macro CV_READ_SEQ_ELEM , the first element is read when the macro is called again. The same applies to
CV_REV_READ_SEQ_ELEM . There is no function to finish the reading process, since it neither changes the sequence nor
creates any temporary buffers. The reader field ptr points to the current element of the sequence that is to be read
next. The code below demonstrates how to use the sequence writer and reader.

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq+ seq = cvCreateSeq(CV_32SC1l, sizeof(CvSeq), sizeof(int), storage);
CvSeqWriter writer;

CvSeqReader reader;

int i;

cvStartAppendToSeq(seq, &writer);
for(i =0; 1 < 10; i++)

{
int val = rand()
CV_WRITE_SEQ_ELEM(val, writer);
printf("

}

cvEndWriteSeq(&writer);

cvStartReadSeq(seq, &reader, 0);
for(i = 0; i < seqg->total; i++)

{

102 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

int val;
#if 1
CV_READ_SEQ_ELEM(val, reader);
printf("
#else /* alternative way, that is prefferable if sequence elements are large,
or their size/type is unknown at compile time x/
printf("
CV_NEXT_SEQ_ELEM(seq->elem_size, reader);
#endif

b

cvReleaseStorage(&storage);

StartWriteSeq

Creates a new sequence and initializes a writer for it.

C: void cvStartWriteSeq (int seq_flags, int header_size, int elem_size, CvMemStorage* storage, CvSe-
qWriter* writer)

Parameters

seq_flags — Flags of the created sequence. If the sequence is not passed to any function
working with a specific type of sequences, the sequence value may be equal to 0; otherwise
the appropriate type must be selected from the list of predefined sequence types.

header_size — Size of the sequence header. The parameter value may not be less than
sizeof (CvSeq) . If a certain type or extension is specified, it must fit within the base type
header.

elem_size — Size of the sequence elements in bytes; must be consistent with the sequence
type. For example, if a sequence of points is created (element type CV_SEQ_ELTYPE_POINT
), then the parameter elem_size must be equal to sizeof (CvPoint) .

storage — Sequence location
writer — Writer state; initialized by the function

The function is a combination of CreateSeq() and StartAppendToSeq() . The pointer to the created sequence is
stored at writer->seq and is also returned by the EndWriteSeq () function that should be called at the end.

TreeToNodeSeq

Gathers all node pointers to a single sequence.
C: CvSeq* cvTreeToNodeSeq (const void* first, int header_size, CvMemStorage* storage)
Parameters
first — The initial tree node

header_size — Header size of the created sequence (sizeof(CvSeq) is the most frequently
used value)

storage — Container for the sequence

The function puts pointers of all nodes reacheable from first into a single sequence. The pointers are written
sequentially in the depth-first order.

2.3. Dynamic Structures 103

The OpenCV Reference Manual, Release 2.3.3

2.4 Operations on Arrays

abs

Computes an absolute value of each matrix element.
C++: MatExpr abs (const Mat& src)
C++: MatExpr abs (const MatExpr& sre)
Parameters
sr¢ — Matrix or matrix expression.
abs is a meta-function that is expanded to one of absdiff () forms:

e C

abs (A-B) is equivalent to absdiff (A, B, C)
° C

abs(A) is equivalent to absdiff (A, Scalar::all(0), C)
e C = Mat_<Vec<uchar,n> >(abs(A*xalpha + beta)) is equivalent to convertScaleAbs (A, C, alpha, beta)

The output matrix has the same size and the same type as the input one except for the last case, where C is depth=CV_8U

See Also:

Matrix Expressions, absdiff ()

absdiff

Computes the per-element absolute difference between two arrays or between an array and a scalar.
C++: void absdiff (InputArray srcl, InputArray src2, OutputArray dst)
Python: cv2.absdiff (srcl, src2[, dst]) — dst
C: void cvAbsDiff (const CvArr* srel, const CvArr* src2, CvArr* dst)
C: void cvAbsDiffS (const CvArr* src, CvArr* dst, CvScalar value)
Python: cv.AbsDiff (srcl, src2, dst) — None
Python: cv.AbsDiffS (src, dst, value) — None
Parameters

srcl — First input array or a scalar.

src2 — Second input array or a scalar.

dst — Destination array that has the same size and type as srcl (or src2).
The function absdiff computes:

* Absolute difference between two arrays when they have the same size and type:

dst(I) = saturate(|srcl(I) — src2(I)])

» Absolute difference between an array and a scalar when the second array is constructed from Scalar or has as
many elements as the number of channels in srcl:

dst(I) = saturate(|srcl(I) — src2|)

104 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

» Absolute difference between a scalar and an array when the first array is constructed from Scalar or has as
many elements as the number of channels in src2:

dst(I) = saturate(|srcl — src2(I)|)

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is pro-
cessed independently.

See Also:
abs ()

add

Computes the per-element sum of two arrays or an array and a scalar.

C++: void add (InputArray srel, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-
1)

Python: cv2.add(srcl, scm[, dst[, mask[, dtype]]]) — dst
C: void cvAdd (const CvArr* srel, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvAddS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Add(srcl, src2, dst, mask=None) — None
Python: cv.AddsS (src, value, dst, mask=None) — None
Parameters
srcl — First source array or a scalar.
src2 — Second source array or a scalar.

dst — Destination array that has the same size and number of channels as the input array(s).
The depth is defined by dtype or srcl/src2.

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

dtype — Optional depth of the output array. See the discussion below.
The function add computes:

e Sum of two arrays when both input arrays have the same size and the same number of channels:

dst(I) = saturate(srcl(I) + src2(I)) if mask(I) #0

* Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) = saturate(srcl(I) +src2) if mask(I) #0

e Sum of a scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

dst(I) = saturate(srcl+ src2(I)) if mask(I) #0

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is pro-
cessed independently.

2.4. Operations on Arrays 105

The OpenCV Reference Manual, Release 2.3.3

The first function in the list above can be replaced with matrix expressions:

dst = srcl + src2;
dst += srcl; // equivalent to add(dst, srcl, dst);

The input arrays and the destination array can all have the same or different depths. For example, you can add a
16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output
array is determined by the dtype parameter. In the second and third cases above, as well as in the first case, when

srcl.depth() == src2.depth(), dtype can be set to the default -1. In this case, the output array will have the
same depth as the input array, be it srcl, src2 or both.
See Also:

subtract(), addWeighted(), scaleAdd(), Mat: :convertTo(), Matrix Expressions

addWeighted

Computes the weighted sum of two arrays.

C++: void addWeighted (InputArray srcl, double alpha, InputArray src2, double beta, double gamma, Out-
putArray dst, int dtype=-1)

Python: cv2.addWeighted (srcl, alpha, src2, beta, gamma[, dst[, dtype]]) — dst

C: void cvAddWeighted (const CvArr* srcl, double alpha, const CvArr* src2, double beta, double gamma,
CvArr* dst)

Python: cv.AddwWeighted (srcl, alpha, src2, beta, gamma, dst) — None
Parameters
srcl — First source array.
alpha — Weight for the first array elements.
src2 — Second source array of the same size and channel number as srcl .
beta — Weight for the second array elements.
dst — Destination array that has the same size and number of channels as the input arrays.
gamma — Scalar added to each sum.

dtype — Optional depth of the destination array. When both input arrays have the same
depth, dtype can be set to -1, which will be equivalent to srcl.depth().

The function addWeighted calculates the weighted sum of two arrays as follows:
dst(I) = saturate(srcl(I) x alpha + src2(I) = beta + gamma)

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed
independently.

The function can be replaced with a matrix expression:

dst = srcl+alpha + src2xbeta + gamma;

See Also:

add(), subtract(), scaleAdd(),Mat::convertTo(), Matrix Expressions

106 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

bitwise_and

Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
C++: void bitwise_and (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_and (srcl, scm[, dst[, mask]]) — dst
C: void cvAnd (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvAndS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.And(srcl, src2, dst, mask=None) — None
Python: cv.AndsS (src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination arrayb that has the same size and type as the input array(s).

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes the per-element bit-wise logical conjunction for:

* Two arrays when srcl and src2 have the same size:

dst(I) = srcl(I) Asrc2(I) if mask(I) #0

e An array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) =srcl(I) Asrc2 if mask(I) #0

e A scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

dst(I) =srcl Asrc2(I) if mask(I) #0

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for
the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases
above, the scalar is first converted to the array type.

bitwise not

Inverts every bit of an array.
C++: void bitwise_not (InputArray src, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_not (src[, dst[, mask]]) — dst
C: void cvNot (const CvArr* src, CvArr* dst)
Python: cv.Not(src, dst) — None
Parameters

src — Source array.

2.4. Operations on Arrays 107

The OpenCV Reference Manual, Release 2.3.3

dst — Destination array that has the same size and type as the input array.

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes per-element bit-wise inversion of the source array:
dst(I) = —src(I)

In case of a floating-point source array, its machine-specific bit representation (usually IEEE754-compliant) is used
for the operation. In case of multi-channel arrays, each channel is processed independently.

bitwise_or

Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
C++: void bitwise_or (InputArray srcl, InputArray sre2, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_or(srcl, src2[, dst[, mask]]) — dst
C: void cvOr (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvOrS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.0r(srcl, src2, dst, mask=None) — None
Python: cv.0rS(src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array that has the same size and type as the input array(s).

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes the per-element bit-wise logical disjunction for:

* Two arrays when srcl and src2 have the same size:

dst(I) = srcl(I) Vsrc2(I) if mask(I) #0

e An array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) =srcl(l)Vsrc2 if mask(I) #0

e A scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

dst(I) =srclVsrc2(I) if mask(I) #0

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for
the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases
above, the scalar is first converted to the array type.

108 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

bitwise_xor

Calculates the per-element bit-wise “exclusive or’” operation on two arrays or an array and a scalar.
C++: void bitwise_xor (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_xor (srcl, scm[, dst[, mask]]) — dst
C: void cvXor (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvXorS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Xor (srcl, src2, dst, mask=None) — None
Python: cv.XorsS(src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array that has the same size and type as the input array(s).

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes the per-element bit-wise logical “exclusive-or” operation for:

* Two arrays when srcl and src2 have the same size:

dst(I) = srcl(I) @ src2(I) if mask(I) #0

* An array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) =srcl(l) @ src2 if mask(I) #0

* A scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

dst(I) =srcl@®src2(I) if mask(I) #0

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for
the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases
above, the scalar is first converted to the array type.

calcCovarMatrix

Calculates the covariance matrix of a set of vectors.

C++: void calcCovarMatrix(const Mat* samples, int nsamples, Mat& covar, Mat& mean, int flags, int
ctype=CV_64F)

C++: void calcCovarMatrix (InputArray samples, OutputArray covar, OutputArray mean, int flags, int
ctype=CV_64F)

2.4. Operations on Arrays 109

The OpenCV Reference Manual, Release 2.3.3

Python: cv2.calcCovarMatrix(samples, ﬂags[, covar[, mean[, ctype]]]) — covar, mean

C: void cvCalcCovarMatrix (const CvArr** vects, int count, CvArr* covMat, CvArr* avg, int flags)

Python: cv.CalcCovarMatrix(vects, covMat, avg, flags) — None

Parameters
samples — Samples stored either as separate matrices or as rows/columns of a single matrix.
nsamples — Number of samples when they are stored separately.
covar — Output covariance matrix of the type ctype and square size.

mean — Input or output (depending on the flags) array as the average value of the input
vectors.

flags — Operation flags as a combination of the following values:

— CV_COVAR_SCRAMBLED The output covariance matrix is calculated as:

scale - [vects[0] — mean, vects[1] — mean, T [vects[0] — mean, vects[1] — mean, ...

The covariance matrix will be nsamples x nsamples. Such an unusual covariance
matrix is used for fast PCA of a set of very large vectors (see, for example, the
EigenFaces technique for face recognition). Eigenvalues of this “scrambled” matrix
match the eigenvalues of the true covariance matrix. The “true” eigenvectors can be
easily calculated from the eigenvectors of the “scrambled” covariance matrix.

— CV_COVAR_NORMAL The output covariance matrix is calculated as:

scale - [vects[0] — mean, vects[1] — mean,...] - [vects[0] — mean, vects[1] — mean, ...

covar will be a square matrix of the same size as the total number of elements in each
input vector. One and only one of CV_COVAR_SCRAMBLED and CV_COVAR_NORMAL
must be specified.

— CV_COVAR _USE_AVG If the flag is specified, the function does not calculate mean

from the input vectors but, instead, uses the passed mean vector. This is useful if mean
has been pre-computed or known in advance, or if the covariance matrix is calculated by
parts. In this case, mean is not a mean vector of the input sub-set of vectors but rather the
mean vector of the whole set.

CV_COVAR_SCALE If the flag is specified, the covariance matrix is scaled. In the
“normal” mode, scaleis 1./nsamples . In the “scrambled” mode, scale is the recip-
rocal of the total number of elements in each input vector. By default (if the flag is not
specified), the covariance matrix is not scaled (scale=1).

CV_COVAR_ROWS [Only useful in the second variant of the function] If the flag is
specified, all the input vectors are stored as rows of the samples matrix. mean should be
a single-row vector in this case.

CV_COVAR_COLS [Only useful in the second variant of the function] If the flag is
specified, all the input vectors are stored as columns of the samples matrix. mean should
be a single-column vector in this case.

The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of the set of input

vectors.

See Also:

PCA, mulTransposed(), Mahalanobis ()

110

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

cartToPolar

Calculates the magnitude and angle of 2D vectors.

C++: void cartToPolar (InputArray X, InputArray y, OutputArray magnitude, OutputArray angle, bool an-
gleInDegrees=false)

Python: cv2.cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) — magnitude, angle

C: void cvCartToPolar (const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int an-
gleInDegrees=0)

Python: cv.CartToPolar(x, y, magnitude, angle=None, angleInDegrees=0) — None
Parameters

x — Array of x-coordinates. This must be a single-precision or double-precision floating-
point array.

y — Array of y-coordinates that must have the same size and same type as x .
magnitude — Destination array of magnitudes of the same size and type as x .

angle — Destination array of angles that has the same size and type as x . The angles are
measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).

angleInDegrees — Flag indicating whether the angles are measured in radians, which is the
default mode, or in degrees.

The function cartToPolar calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):

magnitude(I) = /x(I)% + y(I)2,

angle(I) = atan2(y(I), x(I))[-180/7]

The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.

checkRange

Checks every element of an input array for invalid values.

C++: bool checkRange (InputArray sre, bool quiet=true, Point* pos=0, double minVal=-DBL_MAX, double
maxVal=DBL_MAX)

Python: cv2. checkRange(a[, quiet[, minVal[, maXVal]]]) — retval, pt
Parameters
src — Array to check.

quiet — Flag indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.

pos — Optional output parameter, where the position of the first outlier is stored. In the
second function pos , when not NULL, must be a pointer to array of src.dims elements.

minVal — Inclusive lower boundary of valid values range.
max Val — Exclusive upper boundary of valid values range.

The functions checkRange check that every array element is neither NaN nor infinite. When minVal < -DBL_MAX
and maxVal < DBL_MAX, the functions also check that each value is between minVal and maxVal . In case of multi-
channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is
stored in pos (when pos != NULL). Then, the functions either return false (when quiet=true) or throw an exception.

2.4. Operations on Arrays 111

The OpenCV Reference Manual, Release 2.3.3

compare

Performs the per-element comparison of two arrays or an array and scalar value.
C++: void compare (InputArray srcl, InputArray src2, OutputArray dst, int cmpop)
Python: cv2.compare(srcl, src2, cmpop[, dst]) — dst
C: void cvCmp (const CvArr* srel, const CvArr* sre2, CvArr* dst, int cmpOp)
Python: cv.Cmp(srcl, src2, dst, cmpOp) — None
C: void cvCmpS (const CvArr* srcl, double src2, CvArr* dst, int cmpOp)
Python: cv.CmpS(srcl, src2, dst, cmpOp) — None

Parameters

srcl — First source array or a scalar (in the case of cvCmp, cv.Cmp, cvCmpS, cv.CmpsS it is
always an array). When it is array, it must have a single channel.

src2 — Second source array or a scalar (in the case of cvCmp and cv.Cmp it is always an
array; in the case of cvCmpS, cv.CmpS it is always a scalar). When it is array, it must have a
single channel.

dst — Destination array that has the same size as the input array(s) and type= CV_8UC1 .
cmpop — Flag specifying the relation between the elements to be checked.
— CMP_EQ srclequal to src2.
— CMP_GT srcl greater than src2.
— CMP_GE srcl greater than or equal to src2.
— CMP_LT srcl less than src2.
— CMP_LE srcl less than or equal to src2.
— CMP_NE srcl not equal to src2.
The function compares:

* Elements of two arrays when srcl and src2 have the same size:

dst(I) = src1(I) cmpop src2(I)

i

* Elements of srcl with a scalar src2‘ when ‘‘src2 is constructed from Scalar or has a single element:

dst(I) = src1(I) cmpop src2

* srcl with elements of src2 when srcl is constructed from Scalar or has a single element:
dst(I) = srclcmpopsrc2(I)
When the comparison result is true, the corresponding element of destination array is set to 255. The comparison

operations can be replaced with the equivalent matrix expressions:

Mat dstl = srcl >= src2;
Mat dst2 srcl < 8;

See Also:

checkRange (), min(), max(), threshold (), Matrix Expressions

112 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

completeSymm

Copies the lower or the upper half of a square matrix to another half.
C++: void completeSymm (InputOutputArray mtx, bool lowerToUpper=false)
Python: cv2.completeSymm (mtx[, lowerToUpper]) — None
Parameters
mtx — Input-output floating-point square matrix.

lowerToUpper — Operation flag. If it is true, the lower half is copied to the upper half.
Otherwise, the upper half is copied to the lower half.

The function completeSymm copies the lower half of a square matrix to its another half. The matrix diagonal remains
unchanged:

* mtxi; = mtx;; for i > j if lowerToUpper=false
* mtxi; = mtx;; for i < jif LlowerToUpper=true
See Also:
flip(), transpose()

convertScaleAbs

Scales, computes absolute values, and converts the result to 8-bit.
C++: void convertScaleAbs (InputArray sre, OutputArray dst, double alpha=1, double beta=0)
Python: cv2.convertScaleAbs (src[, dst[, alpha[, beta]]]) — dst
C: void cvConvertScaleAbs (const CvArr* src, CvArr* dst, double scale=1, double shift=0)
Python: cv.ConvertScaleAbs (src, dst, scale=1.0, shift=0.0) — None
Parameters

src — Source array.

dst — Destination array.

alpha — Optional scale factor.

beta — Optional delta added to the scaled values.

On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling,
taking an absolute value, conversion to an unsigned 8-bit type:

dst(I) = saturate_cast<uchar>(|src(I) x alpha + betal)

In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit,
the operation can be emulated by calling the Mat: : convertTo method (or by using matrix expressions) and then by
computing an absolute value of the result. For example:

Mat_<float> A(30,30);

randu(A, Scalar(-100), Scalar(100));

Mat_<float> B = A5 + 3;

B = abs(B);

// Mat_<float> B = abs(Ax5+3) will also do the job,
// but it will allocate a temporary matrix

2.4. Operations on Arrays 113

The OpenCV Reference Manual, Release 2.3.3

See Also:

Mat::convertTo(), abs()

countNonZero

Counts non-zero array elements.

C++: int countNonZero (InputArray mtx)

Python: cv2.countNonZero(src) — retval

C: int cvCountNonZero (const CVArIT™* arr)

Python: cv.CountNonZero(arr) — int

Parameters
mtx — Single-channel array.
The function returns the number of non-zero elements in mtx :
> o1

I: mtx (1) #£0

See Also:

mean (), meanStdDev (), norm(), minMaxLoc(), calcCovarMatrix()

cvarrToMat

Converts CvMat, IplImage , or CvMatND to Mat.
C++: Mat cvarrToMat (const CvArr* src, bool copyData=false, bool allowND=true, int coiMode=0)
Parameters
src — Source CvMat, IplImage, or CvMatND .

copyData — When it is false (default value), no data is copied and only the new header
is created. In this case, the original array should not be deallocated while the new matrix
header is used. If the parameter is true, all the data is copied and you may deallocate the
original array right after the conversion.

allowND — When it is true (default value), CvMatND is converted to 2-dimensional Mat, if it
is possible (see the discussion below). If it is not possible, or when the parameter is false,
the function will report an error.

coiMode — Parameter specifying how the Ipllmage COI (when set) is handled.
— If coiMode=0 and COl is set, the function reports an error.

— If coiMode=1 , the function never reports an error. Instead, it returns the header to
the whole original image and you will have to check and process COI manually. See
extractImageCOI() .

The function cvarrToMat converts CvMat, IplImage , or CvMatND header to Mat header, and optionally duplicates
the underlying data. The constructed header is returned by the function.

When copyData=false , the conversion is done really fast (in O(1) time) and the newly created matrix header will
have refcount=0 , which means that no reference counting is done for the matrix data. In this case, you have to
preserve the data until the new header is destructed. Otherwise, when copyData=true , the new buffer is allocated

114 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

and managed as if you created a new matrix from scratch and copied the data there. That is, cvarrToMat(src, true)
is equivalent to cvarrToMat(src, false).clone() (assuming that COl is not set). The function provides a uniform
way of supporting CvArr paradigm in the code that is migrated to use new-style data structures internally. The reverse
transformation, from Mat to CvMat or IplImage can be done by a simple assignment:

CvMatx A = cvCreateMat(10, 10, CV_32F);
cvSetIdentity(A);

IplImage Al; cvGetImage(A, &Al);

Mat B = cvarrToMat(A);

Mat Bl = cvarrToMat(&Al);

IplImage C = B;

CvMat C1 = BI1;

// now A, Al, B, B1, C and C1 are different headers
// for the same 10x10 floating-point array.

// note that you will need to use "&"

// to pass C & C1 to OpenCV functions, for example:
printf("%sg\n", cvNorm(&C1l, 0, CV_L2));

Normally, the function is used to convert an old-style 2D array (CvMat or IplImage) to Mat . However, the function
can also take CvMatND as an input and create Mat () for it, if it is possible. And, for CvMatND A , it is possible if
and only if A.dim[i].sizexA.dim.step[i] == A.dim.step[i-1] for all or for all butone i, 6 < i < A.dims
. That is, the matrix data should be continuous or it should be representable as a sequence of continuous matrices. By
using this function in this way, you can process CvMatND using an arbitrary element-wise function.

The last parameter, coiMode , specifies how to deal with an image with COI set. By default, it is O and the function
reports an error when an image with COI comes in. And coiMode=1 means that no error is signalled. You have to check
COI presence and handle it manually. The modern structures, such as Mat and MatND do not support COI natively.
To process an individual channel of a new-style array, you need either to organize a loop over the array (for example,
using matrix iterators) where the channel of interest will be processed, or extract the COI using mixChannels () (for
new-style arrays) or extractImageCOI() (for old-style arrays), process this individual channel, and insert it back to
the destination array if needed (using mixChannels () or insertImageC0I() , respectively).

See Also:

cvGetImage(), cvGetMat (), extractImageCOI(), insertImageC0I(), mixChannels()

dct

Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
C++: void dct (InputArray sre, OutputArray dst, int flags=0)
Python: cv2.dct(src[, dst[, ﬂags]]) — dst
C: void cvDCT (const CvArr* sre, CvArr* dst, int flags)
Python: cv.DCT (src, dst, flags) — None
Parameters

src — Source floating-point array.

dst — Destination array of the same size and type as src .

flags — Transformation flags as a combination of the following values:

— DCT_INVERSE performs an inverse 1D or 2D transform instead of the default forward
transform.

— DCT_ROWS performs a forward or inverse transform of every individual row of the
input matrix. This flag enables you to transform multiple vectors simultaneously and

2.4. Operations on Arrays 115

The OpenCV Reference Manual, Release 2.3.3

The

The

can be used to decrease the overhead (which is sometimes several times larger than the
processing itself) to perform 3D and higher-dimensional transforms and so forth.

function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:

¢ Forward Cosine transform of a 1D vector of N elements:

y=CcN.x
where
(N) 2k + 1)j
C].k =1/ a;/Ncos (ZN
and

o =1, 5 =2forj> 0.

¢ Inverse Cosine transform of a 1D vector of N elements:
X = (CN)_1 Y= (CN)T Y

(since C™™) is an orthogonal matrix, C(N) . (C(N))T =1)

e Forward 2D Cosine transform of M x N matrix:

y— N . x. (C(N))T

¢ Inverse 2D Cosine transform of M x N matrix:

X = (C(N])T-XC‘N)

function chooses the mode of operation by looking at the flags and size of the input array:

e If (flags & DCT_INVERSE) == 0, the function does a forward 1D or 2D transform. Otherwise, it is an inverse
1D or 2D transform.

e If (flags & DCT_ROWS) != 0, the function performs a 1D transform of each row.
* If the array is a single column or a single row, the function performs a 1D transform.

* If none of the above is true, the function performs a 2D transform.

Note: Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the
array when necessary.

Also, the function performance depends very much, and not monotonically, on the array size (see
getOptimalDFTSize()). In the current implementation DCT of a vector of size N is computed via DFT of a vector
of size N/2 . Thus, the optimal DCT size N1 >= N can be computed as:

size_t getOptimalDCTSize(size_t N) { return 2xgetOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);

See Also:

dft(),getOptimalDFTSize() , idct()

116

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

dft

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
C++: void dft (InputArray sre, OutputArray dst, int flags=0, int nonzeroRows=0)
Python: cv2.dft (src[, dst[, ﬂags[, nonzeroRows]]]) — dst
C: void cvDFT (const CvArr* sre, CvArr* dst, int flags, int nonzeroRows=0)
Python: cv.DFT (src, dst, flags, nonzeroRows=0) — None
Parameters

src — Source array that could be real or complex.

dst — Destination array whose size and type depends on the flags .

flags — Transformation flags representing a combination of the following values:

— DFT_INVERSE performs an inverse 1D or 2D transform instead of the default forward
transform.

— DFT_SCALE scales the result: divide it by the number of array elements. Normally, it
is combined with DFT_INVERSE .

— DFT_ROWS performs a forward or inverse transform of every individual row of the
input matrix. This flag enables you to transform multiple vectors simultaneously and
can be used to decrease the overhead (which is sometimes several times larger than the
processing itself) to perform 3D and higher-dimensional transforms and so forth.

— DFT_COMPLEX_OUTPUT performs a forward transformation of 1D or 2D real array.
The result, though being a complex array, has complex-conjugate symmetry (CCS, see
the function description below for details). Such an array can be packed into a real array
of the same size as input, which is the fastest option and which is what the function does
by default. However, you may wish to get a full complex array (for simpler spectrum
analysis, and so on). Pass the flag to enable the function to produce a full-size complex
output array.

— DFT_REAL_OUTPUT performs an inverse transformation of a 1D or 2D complex ar-
ray. The result is normally a complex array of the same size. However, if the source array
has conjugate-complex symmetry (for example, it is a result of forward transformation
with DFT_COMPLEX_OUTPUT flag), the output is a real array. While the function itself does
not check whether the input is symmetrical or not, you can pass the flag and then the
function will assume the symmetry and produce the real output array. Note that when the
input is packed into a real array and inverse transformation is executed, the function treats
the input as a packed complex-conjugate symmetrical array. So, the output will also be a
real array.

nonzeroRows — When the parameter is not zero, the function assumes that only the
first nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first
nonzeroRows of the output array (DFT_INVERSE is set) contain non-zeros. Thus, the func-
tion can handle the rest of the rows more efficiently and save some time. This technique is
very useful for computing array cross-correlation or convolution using DFT.

The function performs one of the following:

¢ Forward the Fourier transform of a 1D vector of N elements:
Y =FMN. X

where FS:U = exp(—2mijk/N) and i = v/—1

2.4. Operations on Arrays 117

The OpenCV Reference Manual, Release 2.3.3

¢ Inverse the Fourier transform of a 1D vector of N elements:
X/ — (F(N))” Y = (FIN) "y
X=(1/N)-X,

where F* = (Re(FIN)) — Im(F(N)))T

¢ Forward the 2D Fourier transform of aM x N matrix:

Y =FM X FN

¢ Inverse the 2D Fourier transform of aM x N matrix:

X! — (F(M))* Y- (F(N))*

X= sy X
In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the
inverse Fourier transform can be represented in a packed format called CCS (complex-conjugate-symmetrical). It was
borrowed from IPL (Intel* Image Processing Library). Here is how 2D CCS spectrum looks:

ReYQ‘o RGYOJ ImYQ)] RGY()’z ImYoyz cee ReYo’N/2_1 ImYo)N/2_1 ReYO’N/z
R6Y1 0 R6Y1 1 ImY1 1 R€Y1 2 ITT‘LY] 20 R€Y1 N/2-1 ImY1 N/2-1 R€Y1 JN/2
ITTLY] ,0 ReYz)] ITTIYZ’] ReYz,z ITTLYZ’Z cee ReYz,N /2—1 ImYZ,N/Z,] ITTI.Y] N/2
ReYM/2,1 ,0 RGYM_‘;‘] ImYM_3‘1 ReYMfg)N/2,1 ImYM,_?,’N/Z,] ReYM/2,1 JN/2
ImYM/2,1 0 ReYM_zy] ImYM_ZJ RCYM,LN/Z,1 ImYM,Z’N/zf] ImYM/2,1 N/2
L ReYM/Z,O ReYM,]’] ImYM,m ReYM_]‘N/z_] ImYM_]yN/z_] ReYM/LN/z]

In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:

 If DFT_ROWS is set or the input array has a single row or single column, the function performs a 1D forward or
inverse transform of each row of a matrix when DFT_ROWS is set. Otherwise, it performs a 2D transform.

* If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or 2D transform:
— When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as input.

— When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as input. In case of 2D
transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the
first row of the matrix above. In case of multiple 1D transforms (when using the DCT_ROWS flag), each row
of the output matrix looks like the first row of the matrix above.

* If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the output is a complex
array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole
input array or each row of the input array independently, depending on the flags DFT_INVERSE and DFT_ROWS.

* When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT is set, the output
is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole
input array or each individual row, depending on the flags DFT_INVERSE and DFT_ROWS.

If DFT_SCALE is set, the scaling is done after the transformation.

Unlike dct () , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose
sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an
efficient DFT size can be computed using the getOptimalDFTSize () method.

The sample below illustrates how to compute a DFT-based convolution of two 2D real arrays:

118 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

void convolveDFT(InputArray A, InputArray B, OutputArray C)

{

}

// reallocate the output array if needed

C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;

// compute the size of DFT transform

dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);

// allocate temporary buffers and initialize them with 0’s
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));

// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));

A.copyTo(roiA);

Mat roiB(tempB, Rect(0,0,B.cols,B.rows));

B.copyTo(roiB);

// now transform the padded A & B in-place;

// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);

dft(tempB, tempB, 0, B.rows);

// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums (tempA, tempB, tempA);

// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,

// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows

dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);

// now copy the result back to C.
tempA(Rect (0, 0, C.cols, C.rows)).copyTo(C);

// all the temporary buffers will be deallocated automatically

To optimize this sample, consider the following approaches:

 Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to the top-left
corners of tempA and tempB, respectively, it is not necessary to clear the whole tempA and tempB. It is only
necessary to clear the tempA.cols - A.cols (tempB.cols - B.cols) rightmost columns of the matrices.

» This DFT-based convolution does not have to be applied to the whole big arrays, especially if B is significantly
smaller than A or vice versa. Instead, you can compute convolution by parts. To do this, you need to split the
destination array C into multiple tiles. For each tile, estimate which parts of A and B are required to compute
convolution in this tile. If the tiles in C are too small, the speed will decrease a lot because of repeated work. In
the ultimate case, when each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and there is also a

slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.

threaded.

If different tiles in C can be computed in parallel and, thus, the convolution is done by parts, the loop can be

All of the above improvements have been implemented in matchTemplate() and filter2D() . Therefore, by using
them, you can get the performance even better than with the above theoretically optimal implementation. Though,

2.4. Operations on Arrays

119

The OpenCV Reference Manual, Release 2.3.3

those two functions actually compute cross-correlation, not convolution, so you need to “flip” the second convolution
operand B vertically and horizontally using flip() .

See Also:

dct() , getOptimalDFTSize() , mulSpectrums(), filter2D() , matchTemplate() , flip() , cartToPolar() ,
magnitude() , phase()

divide
Performs per-element division of two arrays or a scalar by an array.
C++: void divide (InputArray srel, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
C++: void divide (double scale, InputArray src2, OutputArray dst, int dtype=-1)
Python: cv2.divide(srcl, scm[, dst[, scale[, dtype]]]) — dst
Python: cv2.divide(scale, src2[, dst[, dtype]]) — dst
C: void cvDiv (const CvArr* srcl, const CvArr* src2, CvArr* dst, double scale=1)
Python: cv.Div (srcl, src2, dst, scale) — None
Parameters

srcl — First source array.

src2 — Second source array of the same size and type as srcl.

scale — Scalar factor.

dst — Destination array of the same size and type as src2 .

dtype — Optional depth of the destination array. If it is -1, dst will have depth
src2.depth(). In case of an array-by-array division, you can only pass -1 when
srcl.depth()==src2.depth().

The functions divide divide one array by another:
dst(I) = saturate(srcl(I)*scale/src2(I))
or a scalar by an array when there is no srcl:
dst(I) = saturate(scale/src2(I))

When src2(I) is zero, dst(I) will also be zero. Different channels of multi-channel arrays are processed indepen-
dently.

See Also:
multiply(), add(), subtract(), Matrix Expressions

determinant

Returns the determinant of a square floating-point matrix.
C++: double determinant (InputArray mtx)

Python: cv2.determinant(mtx) — retval

C: double cvDet (const CvArr* mtx)

Python: cv.Det(mtx) — double

120 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Parameters
mtx — Input matrix that must have CV_32FC1 or CV_64FC1 type and square size.

The function determinant computes and returns the determinant of the specified matrix. For small matrices (
mtx.cols=mtx.rows<=3), the direct method is used. For larger matrices, the function uses LU factorization with
partial pivoting.

For symmetric positively-determined matrices, it is also possible to use eigen() decomposition to compute the deter-
minant.

See Also:

trace(), invert(), solve(), eigen(), Matrix Expressions

eigen

C++: bool eigen (InputArray sre, OutputArray eigenvalues, int lowindex=-1, int highindex=-1)

C++: bool eigen (InputArray src, OutputArray eigenvalues, OutputArray eigenvectors, int lowindex=-1, int
highindex=-1)

C: void cvEigenVV (CvArr* sre, CvArr* eigenvectors, CvArr* eigenvalues, double eps=0, int lowindex=-1,
int highindex=-1)

Python: cv.EigenVV (src, eigenvectors, eigenvalues, eps, lowindex=-1, highindex=-1) — None
Computes eigenvalues and eigenvectors of a symmetric matrix.

Python: cv2.eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors[, lowindex[, highindex]]]])
— retval, eigenvalues, eigenvectors

Parameters

src — Input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmet-
rical (src T == src).

eigenvalues — Output vector of eigenvalues of the same type as src . The eigenvalues are
stored in the descending order.

eigenvectors — Output matrix of eigenvectors. It has the same size and type as src . The
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.

lowindex — Optional index of largest eigenvalue/-vector to calculate. The parameter is ig-
nored in the current implementation.

highindex — Optional index of smallest eigenvalue/-vector to calculate. The parameter is
ignored in the current implementation.

The functions eigen compute just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix src :

srcxeigenvectors.row(i).t() = eigenvalues.at<srcType>(i)+eigenvectors.row(i).t()

Note: in the new and the old interfaces different ordering of eigenvalues and eigenvectors parameters is used.

See Also:
completeSymm() , PCA

2.4. Operations on Arrays 121

The OpenCV Reference Manual, Release 2.3.3

exp

Calculates the exponent of every array element.
C++: void exp (InputArray sre, OutputArray dst)
Python: cv2. exp(src[, dst]) — dst
C: void cvExp (const CvArr* sre, CvArr* dst)
Python: cv.Exp(src, dst) — None
Parameters
src — Source array.
dst — Destination array of the same size and type as src.

The function exp calculates the exponent of every element of the input array:
dst[Il] = esre(D

The maximum relative error is about 7e-6 for single-precision input and less than 1e-10 for double-precision input.
Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.
See Also:

log() , cartToPolar() , polarToCart() , phase() , pow() ,sqrt(),magnitude()

extractimageCOIl

Extracts the selected image channel.
C++: void extractImageCOI(const CvArr* src, OutputArray dst, int coi=-1)
Parameters
src — Source array. It should be a pointer to CvMat or IplImage .
dst — Destination array with a single channel and the same size and depth as src .

coi — If the parameter is >=0 , it specifies the channel to extract. If it is <0 and src is a
pointer to IplImage with a valid COI set, the selected COI is extracted.

The function extractImageCOI is used to extract an image COI from an old-style array and put the result to the
new-style C++ matrix. As usual, the destination matrix is reallocated using Mat: : create if needed.

To extract a channel from a new-style matrix, use mixChannels () or split() .
See Also:

mixChannels() , split() ,merge(), cvarrToMat() , cvSetImageCOI() , cvGetImageCOI()

flip

Flips a 2D array around vertical, horizontal, or both axes.

C++: void flip (InputArray src, OutputArray dst, int flipCode)
Python: cv2. flip(src, ﬂipCode[, dst]) — dst

C: void cvFlip(const CvArr* src, CvArr* dst=NULL, int flipMode=0)
Python: cv.Flip(src, dst=None, flipMode=0) — None

122 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Parameters
src — Source array.
dst — Destination array of the same size and type as src .

flipCode - Flag to specify how to flip the array. 0 means flipping around the x-axis. Positive
value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means
flipping around both axes. See the discussion below for the formulas.

The function flip flips the array in one of three different ways (row and column indices are 0-based):

SrCsrc.rows—i—1,j if flipCode =0
dstij = ¢ SrCisrc.cols—j—1 if flipCode > 0
SICsrc.rows—i—1,src.cols—j—1 if flipCode < 0

The example scenarios of using the function are the following:

* Vertical flipping of the image (flipCode == 0) to switch between top-left and bottom-left image origin. This
is a typical operation in video processing on Microsoft Windows* OS.

 Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check
for a vertical-axis symmetry (flipCode > 0).

* Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference
calculation to check for a central symmetry (flipCode < 0).

* Reversing the order of point arrays (flipCode > 0 or flipCode == 0).
See Also:

transpose() , repeat() , completeSymm()

gemm

Performs generalized matrix multiplication.

C++: void gemm (InputArray srcl, InputArray src2, double alpha, InputArray src3, double beta, OutputArray
dst, int flags=0)

Python: cv2.gemm(srcl, src2, alpha, src3, gamma[, dst[, ﬂags]]) — dst

C: void cvGEMM(const CvArr* srel, const CvArr™* sre2, double alpha, const CvArr* sre3, double beta, CvArr*
dst, int tABC=0)

Python: cv.GEMM(srcl, src2, alphs, src3, beta, dst, tABC=0) — None
Parameters

srcl — First multiplied input matrix that should have CV_32FC1, CV_64FC1, CV_32FC2, or
CV_64FC2 type.

src2 — Second multiplied input matrix of the same type as srcl .
alpha — Weight of the matrix product.

sre3 — Third optional delta matrix added to the matrix product. It should have the same type
assrcland src2.

beta — Weight of src3.
dst — Destination matrix. It has the proper size and the same type as input matrices.

flags — Operation flags:

2.4. Operations on Arrays 123

The OpenCV Reference Manual, Release 2.3.3

— GEMML_1_T transpose srcl
— GEMML_2_T transpose src2
— GEMM_3_T transpose src3

The function performs generalized matrix multiplication similar to the gemm functions in BLAS level 3. For example,
gemm(srcl, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to

dst = alpha- srcl’ - src2 +beta-src3’

The function can be replaced with a matrix expression. For example, the above call can be replaced with:

dst = alpha*srcl.t()*src2 + betaxsrc3.t();

See Also:

mulTransposed() , transform() , Matrix Expressions

getConvertElem

Returns a conversion function for a single pixel.
C++: ConvertData getConvertElem(int fromType, int toType)
C++: ConvertScaleData getConvertScaleElem (int fromType, int toType)
Parameters
fromType — Source pixel type.
toType — Destination pixel type.
from — Callback parameter: pointer to the input pixel.
to — Callback parameter: pointer to the output pixel
cn — Callback parameter: the number of channels. It can be arbitrary, 1, 100, 100000, ...
alpha — ConvertScaleData callback optional parameter: the scale factor.
beta — ConvertScaleData callback optional parameter: the delta or offset.

The functions getConvertElem and getConvertScaleElem return pointers to the functions for converting individual
pixels from one type to another. While the main function purpose is to convert single pixels (actually, for converting
sparse matrices from one type to another), you can use them to convert the whole row of a dense matrix or the whole
matrix at once, by setting cn = matrix.cols*matrix.rows*matrix.channels() if the matrix data is continuous.

ConvertData and ConvertScaleData are defined as:

typedef void (xConvertData)(const void* from, void+ to, int cn)
typedef void (*ConvertScaleData)(const void+ from, void+ to,
int cn, double alpha, double beta)

See Also:

Mat::convertTo() , SparseMat::convertTo()

getOptimalDFTSize

Returns the optimal DFT size for a given vector size.

C++: int getOptimalDFTSize (int vecsize)

124 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Python: cv2.getOptimalDFTSize(vecsize) — retval
C: int cvGetOptimalDFTSize (int size()
Python: cv.GetOptimalDFTSize(size0) — int
Parameters
vecsize — Vector size.

DFT performance is not a monotonic function of a vector size. Therefore, when you compute convolution of two
arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit
larger array that can be transformed much faster than the original one. Arrays whose size is a power-of-two (2, 4, 8,
16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2’s, 3’s, and 5’s (for example, 300
= 5*5%3*2%*2) are also processed quite efficiently.

The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize so that the
DFT of a vector of size N can be computed efficiently. In the current implementation N=2P * 3 9* 5 for some integer

p,q, r.
The function returns a negative number if vecsize is too large (very close to INT_MAX).

While the function cannot be used directly to estimate the optimal vector size for DCT transform
(since the current DCT implementation supports only even-size vectors), it can be easily computed as
getOptimalDFTSize((vecsize+l)/2)*2.

See Also:
dft(),dct(),idft(), idct() ,mulSpectrums()

idct

Computes the inverse Discrete Cosine Transform of a 1D or 2D array.
C++: void idct (InputArray sre, OutputArray dst, int flags=0)
Python: cv2.idct (src[, dst[, ﬂags]]) — dst
Parameters

src — Source floating-point single-channel array.

dst — Destination array of the same size and type as src .

flags — Operation flags.
idct(src, dst, flags) isequivalentto dct(src, dst, flags | DCT_INVERSE).
See Also:
dct(),dft(),idft(), getOptimalDFTSize()

idft

Computes the inverse Discrete Fourier Transform of a 1D or 2D array.
C++: void idft (InputArray sre, OutputArray dst, int flags=0, int outputRows=0)
Python: cv2.idft (src[, dst[, ﬂags[, nonzeroRows]]]) — dst

Parameters

src — Source floating-point real or complex array.

2.4. Operations on Arrays 125

The OpenCV Reference Manual, Release 2.3.3

dst — Destination array whose size and type depend on the flags .
flags — Operation flags. See dft () .

nonzeroRows — Number of dst rows to compute. The rest of the rows have undefined
content. See the convolution sample in dft () description.

idft(src, dst, flags) isequivalentto dft(src, dst, flags | DFT_INVERSE) .

See dft () for details.

Note: None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of dft or idft
explicitly to make these transforms mutually inverse.

See Also:
dft(),dct(), idct(), mulSpectrums(), getOptimalDFTSize()

inRange

Checks if array elements lie between the elements of two other arrays.
C++: void inRange (InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)
Python: cv2.inRange (src, lowerb, upperb[, dst]) — dst
C: void cvInRange (const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst)
C: void cvInRangeS (const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
Python: cv.InRange src, lower, upper, dst) — None
Python: cv.InRangesS (src, lower, upper, dst) — None
Parameters

src — First source array.

lowerb — Inclusive lower boundary array or a scalar.

upperb — Inclusive upper boundary array or a scalar.

dst — Destination array of the same size as src and CV_8U type.
The function checks the range as follows:

* For every element of a single-channel input array:

dst(I) = lowerb(I)p < src(I)o < upperb(I)o

* For two-channel arrays:

dst(I) = lowerb(I)g < src(I)o < upperb(I)o /A lowerb(I); < src(I); < upperb(I);

¢ and so forth.
That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.

When the lower and/or upper bounary parameters are scalars, the indexes (I) at lowerb and upperb in the above
formulas should be omitted.

126 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

invert

Finds the inverse or pseudo-inverse of a matrix.
C++: double invert (InputArray src, OutputArray dst, int method=DECOMP_LU)
Python: cv2.invert(src[, dst[, ﬂags]]) — retval, dst
C: double cvInvert (const CvArr* sre, CvArr* dst, int method=CV_LU)
Python: cv.Invert(src, dst, method=CV_LU) — double
Parameters
src — Source floating-point M x N matrix.
dst — Destination matrix of N x M size and the same type as src .
flags — Inversion method :
— DECOMP_LU Gaussian elimination with the optimal pivot element chosen.
— DECOMP_SVD Singular value decomposition (SVD) method.

— DECOMP_CHOLESKY Cholesky decomposion. The matrix must be symmetrical and
positively defined.

The function invert inverts the matrix src and stores the result in dst . When the matrix src is singular or non-
square, the function computes the pseudo-inverse matrix (the dst matrix) so that norm(srcxdst - I) is minimal,
where I is an identity matrix.

In case of the DECOMP_LU method, the function returns the src determinant (src must be square). If it is 0, the matrix
is not inverted and dst is filled with zeros.

In case of the DECOMP_SVD method, the function returns the inverse condition number of src (the ratio of the smallest
singular value to the largest singular value) and O if src is singular. The SVD method calculates a pseudo-inverse
matrix if src is singular.

Similarly to DECOMP_LU , the method DECOMP_CHOLESKY works only with non-singular square matrices that should
also be symmetrical and positively defined. In this case, the function stores the inverted matrix in dst and returns
non-zero. Otherwise, it returns 0.

See Also:
solve(), SVD

log

Calculates the natural logarithm of every array element.
C++: void log (InputArray src, OutputArray dst)
Python: cv2.log (src[, dst]) — dst
C: void cvLog(const CvArr* src, CvArr* dst)
Python: cv.Log(src, dst) — None
Parameters
src — Source array.

dst — Destination array of the same size and type as src .

2.4. Operations on Arrays 127

The OpenCV Reference Manual, Release 2.3.3

The function log calculates the natural logarithm of the absolute value of every element of the input array:

_f logl|src(I)] ifsrc(I)#0
dst(I) = { C otherwise

where C is a large negative number (about -700 in the current implementation). The maximum relative error is about
7e-6 for single-precision input and less than le-10 for double-precision input. Special values (NaN, Inf) are not
handled.

See Also:

exp(), cartToPolar(), polarToCart(), phase(), pow(), sqrt(), magnitude()

LUT

Performs a look-up table transform of an array.
C++: void LUT (InputArray sre, InputArray lut, OutputArray dst)
Python: cv2.LUT (src, lut[, dst[, interpolation]]) — dst
C: void cvLUT (const CvArr* src, CvArr* dst, const CvArr* lut)
Python: cv.LUT (src, dst, lut) — None
Parameters
src — Source array of 8-bit elements.

lut — Look-up table of 256 elements. In case of multi-channel source array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the source array.

dst — Destination array of the same size and the same number of channels as src , and the
same depth as lut .

The function LUT fills the destination array with values from the look-up table. Indices of the entries are taken from
the source array. That is, the function processes each element of src as follows:

dst(I) « lut(src(I) + d)

where

d— 0 if src has depth Cv_8U
~ | 128 if src has depth CV_8S

See Also:

convertScaleAbs(),Mat::convertTo()

magnitude

Calculates the magnitude of 2D vectors.
C++: void magnitude (InputArray x, InputArray y, OutputArray magnitude)
Python: cv2.magnitude(x, y[, magnitude]) — magnitude

Parameters

x — Floating-point array of x-coordinates of the vectors.

128 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

y — Floating-point array of y-coordinates of the vectors. It must have the same size as X .
dst — Destination array of the same size and type as x .

The function magnitude calculates the magnitude of 2D vectors formed from the corresponding elements of x and y
arrays:

dst(I) = 4/x(1)2 + y(I)?

See Also:
cartToPolar(), polarToCart(), phase(), sqrt()

Mahalanobis

Calculates the Mahalanobis distance between two vectors.
C++: double Mahalanobis (InputArray vecl, InputArray vec2, InputArray icovar)
Python: cv2.Mahalanobis(vl, v2, icovar) — retval
C: double cvMahalanobis (const CvArr* vecl, const CvArr* vec2, CvArr* icovar)
Python: cv.Mahalanobis (vecl, vec2, icovar) — None
Parameters

vecl — First 1D source vector.

vec2 — Second 1D source vector.

icovar — Inverse covariance matrix.

The function Mahalanobis calculates and returns the weighted distance between two vectors:

d(vecl,vec2) = Z icovar(i,j) - (vecl(I) —vec2(I)) - (vecl(j) —vec2(j))
i,j

The covariance matrix may be calculated using the calcCovarMatrix() function and then inverted using the
invert() function (preferably using the DECOMP_SVD method, as the most accurate).

max

Calculates per-element maximum of two arrays or an array and a scalar.
C++: MatExpr max (const Mat& srel, const Mat& sre2)

C++: MatExpr max (const Mat& srel, double value)

C++: MatExpr max (double value, const Mat& srel)

C++: void max (InputArray srcl, InputArray src2, OutputArray dst)
C++: void max (const Mat& srecl, const Mat& src2, Mat& dst)

C++: void max (const Mat& srcl, double value, Mat& dst)

Python: cv2.max(srcl, scm[, dst]) — dst

C: void cvMax (const CvArr* srel, const CvArr* src2, CvArr* dst)

C: void cvMaxs (const CvArr* src, double value, CvArr* dst)

2.4. Operations on Arrays 129

The OpenCV Reference Manual, Release 2.3.3

Python: cv.Max(srcl, src2, dst) — None
Python: cv.MaxS (src, value, dst) — None
Parameters
srcl — First source array.
src2 — Second source array of the same size and type as srcl.
value — Real scalar value.
dst — Destination array of the same size and type as srcl.

The functions max compute the per-element maximum of two arrays:
dst(I) = max(srcl(I),src2(I))
or array and a scalar:
dst(I) = max(srcl(I),value)

In the second variant, when the source array is multi-channel, each channel is compared with value independently.

The first 3 variants of the function listed above are actually a part of Matrix Expressions . They return an expression
object that can be further either transformed/ assigned to a matrix, or passed to a function, and so on.

See Also:

min(), compare(), inRange(), minMaxLoc (), Matrix Expressions

mean

Calculates an average (mean) of array elements.
C++: Scalar mean (InputArray sre, InputArray mask=noArray())
Python: cv2.mean(src[, mask]) — retval
C: CvScalar cvAvg(const CvArr* sre, const CvArr* mask=NULL)
Python: cv.Avg(src, mask=None) — CvScalar

Parameters

src — Source array that should have from 1 to 4 channels so that the result can be stored in
Scalar_.

mask — Optional operation mask.

The function mean computes the mean value M of array elements, independently for each channel, and return it:

N = ZI: mask(1)#0 1
MC = (ZI: mask(1)#0 mtX(I)C) /N

When all the mask elements are 0’s, the functions return Scalar::all(0) .
See Also:

countNonZero(), meanStdDev (), norm(), minMaxLoc ()

130 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

meanStdDev

Calculates a mean and standard deviation of array elements.

C++: void meanStdDev (InputArray sre, OutputArray mean, OutputArray stddev, InputArray
mask=noArray())

Python: cv2. meanSthev(src[, mean[, stddev[, mask]]]) — mean, stddev
C: void cvAvgSdv (const CvArr* sre, CvScalar* mean, CvScalar* stdDev, const CvArr* mask=NULL)
Python: cv.AvgSdv (src, mask=None)-> (mean, stdDev)

Parameters

src — Source array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ ‘s.

mean — Output parameter: computed mean value.
stddev — Output parameter: computed standard deviation.
mask — Optional operation mask.

The function meanStdDev computes the mean and the standard deviation M of array elements independently for each
channel and returns it via the output parameters:

N = ZI,mask(I);ﬁO 1

I: mask(I)#0 SrC(I)C

mean, =

stddev, = \/ZI:mask(I]#O(S]\:C(I)C_meanC)z

When all the mask elements are 0’s, the functions return mean=stddev=Scalar::all(0) .

Note: The computed standard deviation is only the diagonal of the complete normalized covariance matrix. If the full
matrix is needed, you can reshape the multi-channel array M x N to the single-channel array MxN x mtx.channels()
(only possible when the matrix is continuous) and then pass the matrix to calcCovarMatrix() .

See Also:

countNonZero(), mean(), norm(), minMaxLoc(), calcCovarMatrix()

merge

Composes a multi-channel array from several single-channel arrays.
C++: void merge (const Mat* mv, size_t count, OutputArray dst)
C++: void merge (const vector<Mat>& myv, OutputArray dst)
Python: cv2.merge(mv[, dst]) — dst
C: void cvMerge (const CvArr* src0, const CvArr* srel, const CvArr* src2, const CvArr* sre3, CvArr* dst)
Python: cv.Merge (src0, srcl, src2, src3, dst) — None
Parameters

my — Source array or vector of matrices to be merged. All the matrices in mv must have the
same size and the same depth.

count — Number of source matrices when mv is a plain C array. It must be greater than zero.

2.4. Operations on Arrays 131

The OpenCV Reference Manual, Release 2.3.3

dst — Destination array of the same size and the same depth as mv[0] . The number of
channels will be the total number of channels in the matrix array.

The functions merge merge several arrays to make a single multi-channel array. That is, each element of the output
array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as
mv[i].channels()-element vectors.

The function split () does the reverse operation. If you need to shuffle channels in some other advanced way, use
mixChannels() .

See Also:

mixChannels (), split(),Mat::reshape()

min
Calculates per-element minimum of two arrays or array and a scalar.
C++: MatExpr min(const Mat& srcl, const Mat& sre2)
C++: MatExpr min (const Mat& srel, double value)
C++: MatExpr min (double value, const Mat& srcl)
C++: void min (InputArray srcl, InputArray src2, OutputArray dst)
C++: void min (const Mat& srcl, const Mat& src2, Mat& dst)
C++: void min (const Mat& srel, double value, Mat& dst)
Python: cv2.min(srcl, scm[, dst]) — dst
C: void cvMin (const CvArr* srel, const CvArr* src2, CvArr* dst)
C: void cvMinS (const CvArr* sre, double value, CvArr* dst)
Python: cv.Min(srcl, src2, dst) — None
Python: cv.MinS (src, value, dst) — None
Parameters
srcl — First source array.
src2 — Second source array of the same size and type as srcl.
value — Real scalar value.
dst — Destination array of the same size and type as srcl.

The functions min compute the per-element minimum of two arrays:
dst(I) = min(srcl(I),src2(I))
or array and a scalar:
dst(I) = min(srcl(I), value)

In the second variant, when the source array is multi-channel, each channel is compared with value independently.

The first three variants of the function listed above are actually a part of Matrix Expressions . They return the expression
object that can be further either transformed/assigned to a matrix, or passed to a function, and so on.

See Also:

max (), compare(), inRange(), minMaxLoc (), Matrix Expressions

132 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

minMaxIdx

Finds the global minimum and maximum in an array

C++: void minMaxIdx (InputArray sre, double* minVal, double* maxVal, int* minldx=0, int* maxIdx=0,

InputArray mask=noArray())

Parameters
sre¢ — Source single-channel array.
minVal — Pointer to the returned minimum value. NULL is used if not required.
maxVal — Pointer to the returned maximum value. NULL is used if not required.

minldx — Pointer to the returned minimum location (in nD case). NULL is used if not re-
quired. Otherwise, it must point to an array of src.dims elements. The coordinates of the
minimum element in each dimension are stored there sequentially.

Note: When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx),
even if src is a single-row or single-column matrix. In OpenCV (following MATLAB)
each array has at least 2 dimensions, i.e. single-row matrix is Mx1 matrix (and therefore
minIdx/maxIdx willbe (i1,0)/(i2,0)) and single-column matrix is 1xN matrix (and there-
fore minIdx/maxIdx will be (0,j1)/(0,j2)).

maxIdx — Pointer to the returned maximum location (in nD case). NULL is used if not
required.

The function minMaxIdx finds the minimum and maximum element values and their positions. The extremums
are searched across the whole array or, if mask is not an empty array, in the specified array region.

The function does not work with multi-channel arrays. If you need to find minimum or maximum elements
across all the channels, use Mat: : reshape () first to reinterpret the array as single-channel. Or you may extract
the particular channel using either extractImageCOI() , or mixChannels() ,or split() .

In case of a sparse matrix, the minimum is found among non-zero elements only.

minMaxLoc

Finds the global minimum and maximum in an array.

C++: void minMaxLoc (InputArray sre, double* minVal, double* maxVal=0, Point* minLoc=0, Point*

maxLoc=0, InputArray mask=noArray())

C++: void minMaxLoc (const SparseMat& sre, double* minVal, double* maxVal, int* minldx=0, int*

maxIdx=0)

Python: cv2.minMaxLoc (src[, mask]) — minVal, maxVal, minLoc, maxLoc

C: void cvMinMaxLoc (const CvArr* arr, double* minVal, double* maxVal, CvPoint* minLoc=NULL, Cv-

Point* maxLoc=NULL, const CvArr* mask=NULL)

Python: cv.MinMaxLoc (arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc)

Parameters
src — Source single-channel array.
minVal — Pointer to the returned minimum value. NULL is used if not required.

max Val — Pointer to the returned maximum value. NULL is used if not required.

24,

Operations on Arrays 133

The OpenCV Reference Manual, Release 2.3.3

minLoc — Pointer to the returned minimum location (in 2D case). NULL is used if not
required.

maxLoc — Pointer to the returned maximum location (in 2D case). NULL is used if not
required.

mask — Optional mask used to select a sub-array.

The functions minMaxLoc find the minimum and maximum element values and their positions. The extremums are
searched across the whole array or, if mask is not an empty array, in the specified array region.

The functions do not work with multi-channel arrays. If you need to find minimum or maximum elements across all
the channels, use Mat: : reshape () first to reinterpret the array as single-channel. Or you may extract the particular
channel using either extractImageCOI() , or mixChannels() ,or split() .

See Also:

max (), min(), compare(), inRange(), extractImageCOI(), mixChannels(), split(),Mat::reshape()

mixChannels

Copies specified channels from input arrays to the specified channels of output arrays.

C++: void mixChannels (const Mat* src, int nsrc, Mat* dst, int ndst, const int* fromTo, size_t npairs)
C++: void mixChannels (const vector<Mat>& sre, vector<Mat>& dst, const int* fromTo, int npairs)
Python: cv2.mixChannels (src, dst, fromTo) — None

C: void cvMixChannels (const CvArr** sre, int srcCount, CvArr** dst, int dstCount, const int* fromTo, int
pairCount)

Python: cv.MixChannels (src, dst, fromTo) — None
Parameters

src — Input array or vector of matrices. All the matrices must have the same size and the
same depth.

nsrc — Number of matrices in src .

dst — Output array or vector of matrices. All the matrices must be allocated . Their size and
depth must be the same as in src[0] .

ndst — Number of matrices in dst .

fromTo — Array of index pairs specifying which channels are copied and where.
fromTo[k+2] is a O-based index of the input channel in src . fromTo[k+2+1] is an
index of the output channel in dst . The continuous channel numbering is used: the
first input image channels are indexed from 0 to src[0].channels()-1 , the second
input image channels are indexed from src[0].channels() to src[0].channels() +
src[1].channels()-1, and so on. The same scheme is used for the output image chan-
nels. As a special case, when fromTo[kx*2] is negative, the corresponding output channel
is filled with zero .

npairs — Number of index pairs in fromTo.
The functions mixChannels provide an advanced mechanism for shuffling image channels.
split() and merge() and some forms of cvtColor () are partial cases of mixChannels .

In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B channels swapped)
and a separate alpha-channel image:

134 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Mat rgba(100, 100, CV_8UC4, Scalar(1,2,3,4));
Mat bgr(rgba.rows, rgba.cols, CV_8UC3);
Mat alpha(rgba.rows, rgba.cols, CV_8UC1l);

// forming an array of matrices is a quite efficient operation,
// because the matrix data is not copied, only the headers

Mat out[] = { bgr, alpha };

// rgbal@] -> bgr[2], rgbal[l] -> bgr[1],

// rgbal[2] -> bgr[0], rgbal[3] -> alphal[0]

int from_to[] = { 0,2, 1,1, 2,0, 3,3 };

mixChannels(&rgba, 1, out, 2, from_to, 4);

Note: Unlike many other new-style C++ functions in OpenCV (see the introduction section and Mat: :create()),
mixChannels requires the destination arrays to be pre-allocated before calling the function.

See Also:

split(), merge(), cvtColor()

mulSpectrums

Performs the per-element multiplication of two Fourier spectrums.
C++: void mulSpectrums (InputArray srcl, InputArray src2, OutputArray dst, int flags, bool conj=false)
Python: cv2.mulSpectrums (a, b, flags[, c[, conjB]]) — ¢
C: void cvMulSpectrums (const CvArr* srcl, const CvArr* sre2, CvArr* dst, int flags)
Python: cv.MulSpectrums (srcl, src2, dst, flags) — None
Parameters

srcl — First source array.

src2 — Second source array of the same size and type as srcl.

dst — Destination array of the same size and type as srcl.

flags — Operation flags. Currently, the only supported flag is DFT_ROWS, which indicates that
each row of srcl and src2 is an independent 1D Fourier spectrum.

conj — Optional flag that conjugates the second source array before the multiplication (true)
or not (false).

The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex matrices that
are results of a real or complex Fourier transform.

The function, together with dft() and idft() , may be used to calculate convolution (pass conj=false) or cor-
relation (pass conj=false) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per
element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be
CCS-packed (see dft () for details).

multiply

Calculates the per-element scaled product of two arrays.

C++: void multiply (InputArray srcl, InputArray src2, OutputArray dst, double scale=1)

2.4. Operations on Arrays 135

The OpenCV Reference Manual, Release 2.3.3

Python: cv2.multiply(srcl, scm[, dst[, scale[, dtype]]]) — dst
C: void cvMul (const CvArr* srcl, const CvArr* src2, CvArr* dst, double scale=1)
Python: cv.Mul(srcl, src2, dst, scale) — None
Parameters

srcl — First source array.

src2 — Second source array of the same size and the same type as srcl.

dst — Destination array of the same size and type as srcl.

scale — Optional scale factor.

The function multiply calculates the per-element product of two arrays:
dst(I) = saturate(scale - srcl(I) - src2(I))

There is also a Matrix Expressions -friendly variant of the first function. See Mat: :mul() .
For a not-per-element matrix product, see gemm() .
See Also:

add(), subtract(), divide(), Matrix Expressions, scaleAdd(), addWeighted(), accumulate(),
accumulateProduct(), accumulateSquare(), Mat: :convertTo()

mulTransposed

Calculates the product of a matrix and its transposition.

C++: void mulTransposed (InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double
scale=1, int rtype=-1)

Python: cv2.mulTransposed (src, aTa[, dst[, delta[, scale[, dtype]]]]) — dst

C: void cvMulTransposed (const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double
scale=1.0)

Python: cv.MulTransposed (src, dst, order, delta=None, scale) — None
Parameters

src — Source single-channel matrix. Note that unlike gemm (), the function can multiply not
only floating-point matrices.

dst — Destination square matrix.
aTa — Flag specifying the multiplication ordering. See the description below.

delta — Optional delta matrix subtracted from src before the multiplication. When the
matrix is empty (delta=noArray()), it is assumed to be zero, that is, nothing is subtracted.
If it has the same size as src , it is simply subtracted. Otherwise, it is “repeated” (see
repeat()) to cover the full src and then subtracted. Type of the delta matrix, when it
is not empty, must be the same as the type of created destination matrix. See the rtype
parameter description below.

scale — Optional scale factor for the matrix product.

rtype — Optional type of the destination matrix. When it is negative, the destination matrix
will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(rtype) that
should be either CV_32F or CV_64F .

136 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

The function mulTransposed calculates the product of src and its transposition:
dst = scale(src — delta)' (src — delta)
if aTa=true, and

dst = scale(src — delta)(src — delta)’

otherwise. The function is used to compute the covariance matrix. With zero delta, it can be used as a faster substitute

for general matrix product AxB when B=A"’
See Also:

calcCovarMatrix(), gemm(), repeat(), reduce()

norm

Calculates an absolute array norm, an absolute difference norm, or a relative difference norm.

C++: double norm(InputArray srcl, int normType=NORM_L2, InputArray mask=noArray())
C++: double norm(InputArray srcl, InputArray src2, int normType, InputArray mask=noArray())
C++: double norm(const SparseMat& sre, int normType)

Python: cv2.norm(srcl [, normType[, mask]]) — retval

Python: cv2.norm(srcl, src2[, normType[, mask]]) — retval

C: double cvNorm(const CvArr* arrl, const CvArr* arr2=NULL, int normType=CV_L2, const CvArr*

mask=NULL)
Python: cv.Norm(arrl, arr2, normType=CV_L2, mask=None) — double

Parameters
srcl — First source array.
src2 — Second source array of the same size and the same type as srcl.
normType — Type of the norm. See the details below.
mask — Optional operation mask. It must have the same size as srcl and CV_8UC1 type.

The functions norm calculate an absolute norm of srcl (when there is no src2):

|lsrci||L,, = maxy|srcl(I)] if normType = NORM_INF
norm =< |[[srclfy, =2 ;lsrcl(I) if normType = NORM_L1

srcl||, = /> ;srcl(I)? if normType = NORM_L2

or an absolute or relative difference norm if src2 is there:

|Isrcl —src2||r,, = maxy|srcl(I) —src2(I)] if normType = NORM_INF
norm =< |srcl—src2||y, =2 ;lsrcl(I) — src2(I)] if normType = NORM_L1
[srcl—src2||r, =/ ;(srcl(I) —src2(I))? if normType = NORM_L2

or
%%ﬂ‘f”w if normType = NORM_RELATIVE INF
norm = { RS2l if normType = NORM_RELATIVE L1
1
lisret=sre2ll, i hormType — NORM_RELATIVE_L2
[[sre2flt,

The functions norm return the calculated norm.

2.4. Operations on Arrays

137

The OpenCV Reference Manual, Release 2.3.3

When the mask parameter is specified and it is not empty, the norm is computed only over the region specified by the
mask.

A multi-channel source arrays are treated as a single-channel, that is, the results for all channels are combined.

normalize

Normalizes the norm or value range of an array.

C++: void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm-
Type=NORM_L2, int rtype=-1, InputArray mask=noArray())

C++: void normalize (const SparseMat& sre, SparseMat& dst, double alpha, int normType)
Python: cv2. normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) — dst
Parameters
src¢ — Source array.
dst — Destination array of the same size as src .

alpha — Norm value to normalize to or the lower range boundary in case of the range nor-
malization.

beta — Upper range boundary in case ofthe range normalization. It is not used for the norm
normalization.

normType — Normalization type. See the details below.

rtype — When the parameter is negative, the destination array has the same type as src. Oth-
erwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(rtype)

mask — Optional operation mask.

The functions normalize scale and shift the source array elements so that
dst|[L, = alpha
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

mIin dst(I) = alpha, max dst(I) = beta

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized.
This means that the norm or min-n-max are computed over the sub-array, and then this sub-array is modified to be
normalized. If you want to only use the mask to compute the norm or min-max but modify the whole array, you can
use norm() and Mat: :convertTo().

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transfor-
mation for sparse matrices is not allowed since it can shift the zero level.

See Also:
norm(),Mat::convertTo(), SparseMat::convertTo()

PCA

class PCA

138 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Principal Component Analysis class.

The class is used to compute a special basis for a set of vectors. The basis will consist of eigenvectors of the co-
variance matrix computed from the input set of vectors. The class PCA can also transform vectors to/from the new
coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and
any linear combination of such vectors) can be quite accurately approximated by taking its first few components,
corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that
you compute a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant
eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can
represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected
vector’s coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See
http://en.wikipedia.org/wiki/Principal_component_analysis .

The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector)
that is used to compute PCA. The second function stores another “test” set of vectors (a row per vector). First, these
vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and
printed for each vector.

PCA compressPCA(InputArray pcaset, int maxComponents,
const Mat& testset, OutputArray compressed)

{
PCA pca(pcaset, // pass the data
Mat(), // there is no pre-computed mean vector,
// so let the PCA engine to compute it
CV_PCA_DATA_AS_ROW, // indicate that the vectors
// are stored as matrix rows
// (use CV_PCA_DATA_AS_COL if the vectors are
// the matrix columns)
maxComponents // specify how many principal components to retain
)
// 1if there is no test data, just return the computed basis, ready-to-use
if(!testset.data)
return pca;
CV_Assert(testset.cols == pcaset.cols);
compressed.create(testset.rows, maxComponents, testset.type());
Mat reconstructed;
for(int i = 0; i < testset.rows; i++)
{
Mat vec = testset.row(i), coeffs = compressed.row(i);
// compress the vector, the result will be stored
// in the i-th row of the output matrix
pca.project(vec, coeffs);
// and then reconstruct it
pca.backProject(coeffs, reconstructed);
// and measure the error
printf("sd. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
}
return pca;
}
See Also:

calcCovarMatrix(), mulTransposed(), SVD, dft(), dct()

2.4. Operations on Arrays 139

http://en.wikipedia.org/wiki/Principal_component_analysis

The OpenCV Reference Manual, Release 2.3.3

PCA::PCA

PCA constructors
C++: PCA::PCA()
C++: PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
Parameters
data — Input samples stored as matrix rows or matrix columns.

mean — Optional mean value. If the matrix is empty (noArray()), the mean is computed
from the data.

flags — Operation flags. Currently the parameter is only used to specify the data layout.
— CV_PCA_DATA_AS_ROW indicates that the input samples are stored as matrix rows.

— CV_PCA_DATA_AS_COL indicates that the input samples are stored as matrix
columns.

maxComponents — Maximum number of components that PCA should retain. By default,
all the components are retained.

The default constructor initializes an empty PCA structure. The second constructor initializes the structure and calls
PCA: :operator() .

PCA::operator ()

Performs Principal Component Analysis of the supplied dataset.
C++: PCA& PCA: :operator() (InputArray data, InputArray mean, int flags, int maxComponents=0)
Python: cv2. PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) — mean, eigenvectors
Parameters
data — Input samples stored as the matrix rows or as the matrix columns.

mean — Optional mean value. If the matrix is empty (noArray()), the mean is computed
from the data.

flags — Operation flags. Currently the parameter is only used to specify the data layout.
— CV_PCA_DATA_AS_ROW indicates that the input samples are stored as matrix rows.

— CV_PCA_DATA_AS_COL indicates that the input samples are stored as matrix
columns.

maxComponents — Maximum number of components that PCA should retain. By default,
all the components are retained.

The operator performs PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets.
That is, if the structure has been previously used with another dataset, the existing internal data is reclaimed and the
new eigenvalues, eigenvectors , and mean are allocated and computed.

The computed eigenvalues are sorted from the largest to the smallest and the corresponding eigenvectors are stored as
PCA: :eigenvectors rows.

140 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

PCA::project

Projects vector(s) to the principal component subspace.

C++: Mat PCA: :project (InputArray vec) const

C++: void PCA: :project (InputArray vec, OutputArray result) const

Python: cv2.PCAProject(vec, mean, eigenvectors[, result]) — result
Parameters

vec — Input vector(s). They must have the same dimensionality and the same layout as
the input data used at PCA phase. That is, if CV_PCA_DATA_AS_ROW are specified, then
vec.cols==data.cols (vector dimensionality) and vec. rows is the number of vectors to
project. The same is true for the CV_PCA_DATA_AS_COL case.

result — Output vectors. In case of CV_PCA_DATA_AS_COL , the output matrix has as many
columns as the number of input vectors. This means that result.cols==vec.cols and the
number of rows match the number of principal components (for example, maxComponents
parameter passed to the constructor).

The methods project one or more vectors to the principal component subspace, where each vector projection is repre-
sented by coefficients in the principal component basis. The first form of the method returns the matrix that the second
form writes to the result. So the first form can be used as a part of expression while the second form can be more
efficient in a processing loop.

PCA::backProject

Reconstructs vectors from their PC projections.

C++: Mat PCA: :backProject (InputArray vec) const

C++: void PCA: :backProject (InputArray vec, OutputArray result) const

Python: cv2.PCABackProject(vec, mean, eigenvectors[, result]) — result
Parameters

vec — Coordinates of the vectors in the principal component subspace. The layout and size
are the same as of PCA: :project output vectors.

result — Reconstructed vectors. The layout and size are the same as of PCA: :project input
vectors.

The methods are inverse operations to PCA: :project() . They take PC coordinates of projected vectors and re-
construct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are
different from the originals. But typically, the difference is small if the number of components is large enough (but
still much smaller than the original vector dimensionality). As a result, PCA is used.

perspectiveTransform

Performs the perspective matrix transformation of vectors.

C++: void perspectiveTransform(InputArray sre, OutputArray dst, InputArray mtx)
Python: cv2.perspectiveTransform(src, m[, dst]) — dst

C: void cvPerspectiveTransform(const CvArr* sre, CvArr* dst, const CvMat* mat)

Python: cv.PerspectiveTransform(src, dst, mat) — None

2.4. Operations on Arrays 141

The OpenCV Reference Manual, Release 2.3.3

Parameters

src — Source two-channel or three-channel floating-point array. Each element is a 2D/3D
vector to be transformed.

dst — Destination array of the same size and type as src .
mtx — 3x3 or 4x4 floating-point transformation matrix.

The function perspectiveTransform transforms every element of src by treating it as a 2D or 3D vector, in the
following way:

(%, y,2) = (x"/w,y"/w,z"/w)
where
x,y,z/,w')=mat-[x y z 1]
and

/ s /
W:{w ifw’ #0

oo otherwise

Here a 3D vector transformation is shown. In case of a 2D vector transformation, the z component is omitted.

Note: The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image us-
ing perspective transformation, use warpPerspective() . If you have an inverse problem, that is, you want to
compute the most probable perspective transformation out of several pairs of corresponding points, you can use
getPerspectiveTransform() or findHomography() .

See Also:

transform(),warpPerspective(), getPerspectiveTransform(), findHomography()

phase

Calculates the rotation angle of 2D vectors.
C++: void phase (InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)
Python: cv2.phase(x, y[, angle[, angleInDegrees]]) — angle
Parameters
x — Source floating-point array of x-coordinates of 2D vectors.

y — Source array of y-coordinates of 2D vectors. It must have the same size and the same
type as X .

angle — Destination array of vector angles. It has the same size and same type as x .

angleInDegrees — When it is true, the function computes the angle in degrees. Otherwise,
they are measured in radians.

The function phase computes the rotation angle of each 2D vector that is formed from the corresponding elements of
xandy :

angle(I) = atan2(y(I), x(I))

The angle estimation accuracy is about 0.3 degrees. When x (I)=y(I)=0, the corresponding angle(I) is set to O.

142 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

polarToCart

Computes x and y coordinates of 2D vectors from their magnitude and angle.

C++: void polarToCart (InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool an-
gleInDegrees=false)

Python: cv2.polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) =X,y

C: void cvPolarToCart (const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angleInDe-
grees=0)

Python: cv.PolarToCart(magnitude, angle, x, y, angleInDegrees=0) — None
Parameters

magnitude — Source floating-point array of magnitudes of 2D vectors. It can be an empty
matrix (=Mat ()). In this case, the function assumes that all the magnitudes are =1. If it is
not empty, it must have the same size and type as angle .

angle — Source floating-point array of angles of 2D vectors.
x — Destination array of x-coordinates of 2D vectors. It has the same size and type as angle.
y — Destination array of y-coordinates of 2D vectors. It has the same size and type as angle.

angleInDegrees — When it is true, the input angles are measured in degrees. Otherwise.
they are measured in radians.

The function polarToCart computes the Cartesian coordinates of each 2D vector represented by the corresponding
elements of magnitude and angle:

x(I) = magnitude(I)cos(angle(I))
y(I) = magnitude(I) sin(angle(I))

The relative accuracy of the estimated coordinates is about le-6.

See Also:
cartToPolar(), magnitude(), phase(), exp(), log(), pow(), sqrt()

pow

Raises every array element to a power.
C++: void pow (InputArray sre, double p, OutputArray dst)
Python: cv2.pow(src, power[, dst]) — dst
C: void cvPow (const CvArr* sre, CvArr* dst, double power)
Python: cv.Pow(src, dst, power) — None
Parameters

src — Source array.

p — Exponent of power.

dst — Destination array of the same size and type as src .

The function pow raises every element of the input array to p :

_f src(I)P if pis integer
dst(I) _{ Isrc(I)[P otherwise

2.4. Operations on Arrays 143

The OpenCV Reference Manual, Release 2.3.3

So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to
get true values for negative values using some extra operations. In the example below, computing the 5th root of array
src shows:

Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);

For some values of p , such as integer values, 0.5 and -0.5, specialized faster algorithms are used.
See Also:

sqrt(), exp(), log(), cartToPolar(), polarToCart()

RNG

class RNG

Random number generator. It encapsulates the state (currently, a 64-bit integer) and has methods to re-
turn scalar random values and to fill arrays with random values. Currently it supports uniform and Gaus-
sian (normal) distributions. The generator uses Multiply-With-Carry algorithm, introduced by G. Marsaglia (
http://en.wikipedia.org/wiki/Multiply-with-carry). Gaussian-distribution random numbers are generated using the
Ziggurat algorithm (http://en.wikipedia.org/wiki/Ziggurat_algorithm), introduced by G. Marsaglia and W. W. Tsang.

RNG::RNG

The constructors
C++: RNG::RNG()
C++: RNG: :RNG (uint64 state)
Parameters
state — 64-bit value used to initialize the RNG.

These are the RNG constructors. The first form sets the state to some pre-defined value, equal to 2**32-1 in the
current implementation. The second form sets the state to the specified value. If you passed state=0, the constructor
uses the above default value instead to avoid the singular random number sequence, consisting of all zeros.

RNG::next

Returns the next random number.
C++: unsigned int RNG: :next ()

The method updates the state using the MWC algorithm and returns the next 32-bit random number.

RNG::operator T

Returns the next random number of the specified type.
C++: RNG::operator uchar()
C++: RNG::operator schar()

C++: RNG: :operator ushort()

144 Chapter 2. core. The Core Functionality

http://en.wikipedia.org/wiki/Multiply-with-carry
http://en.wikipedia.org/wiki/Ziggurat_algorithm

The OpenCV Reference Manual, Release 2.3.3

C++: RNG::operator short int()
C++: RNG::operator int()

C++: RNG::operator unsigned int()
C++: RNG::operator float()

C++: RNG::operator double()

Each of the methods updates the state using the MWC algorithm and returns the next random number of the specified
type. In case of integer types, the returned number is from the available value range for the specified type. In case of
floating-point types, the returned value is from [0, 1) range.

RNG::operator ()

Returns the next random number.
C++: unsigned int RNG: :operator() ()
C++: unsigned int RNG: :operator () (unsigned int N)
Parameters
N — Upper non-inclusive boundary of the returned random number.

The methods transform the state using the MWC algorithm and return the next random number. The first form is
equivalent to RNG: :next () . The second form returns the random number modulo N , which means that the result is
in the range [0, N) .

RNG::uniform

Returns the next random number sampled from the uniform distribution.
C++: int RNG: :uniform(int a, int b)
C++: float RNG: :uniform(float a, float b)
C++: double RNG: :uniform(double a, double b)
Parameters
a — Lower inclusive boundary of the returned random numbers.
b — Upper non-inclusive boundary of the returned random numbers.

The methods transform the state using the MWC algorithm and return the next uniformly-distributed random number
of the specified type, deduced from the input parameter type, from the range [a, b) . There is a nuance illustrated by
the following sample:

RNG rng;

// always produces 0
double a = rng.uniform(0, 1);

// produces double from [0, 1)
double al = rng.uniform((double)®, (double)l);

// produces float from [0, 1)
double b = rng.uniform(0.f, 1.f);

// produces double from [0, 1)

2.4. Operations on Arrays 145

The OpenCV Reference Manual, Release 2.3.3

double ¢ = rng.uniform(0., 1.);

// may cause compiler error because of ambiguity:
// RNG::uniform(@, (int)0.999999)? or RNG::uniform((double)®, 0.99999)?
double d = rng.uniform(0, 0.999999);

The compiler does not take into account the type of the variable to which you assign the result of RNG: :uniform .
The only thing that matters to the compiler is the type of a and b parameters. So, if you want a floating-point random
number, but the range boundaries are integer numbers, either put dots in the end, if they are constants, or use explicit
type cast operators, as in the al initialization above.

RNG::gaussian

Returns the next random number sampled from the Gaussian distribution.
C++: double RNG: : gaussian (double sigma)
Parameters
sigma — Standard deviation of the distribution.

The method transforms the state using the MWC algorithm and returns the next random number from the Gaussian
distribution N(0, sigma) . That is, the mean value of the returned random numbers is zero and the standard deviation
is the specified sigma .

RNG::fill

Fills arrays with random numbers.
C++: void RNG: : fill (InputOutputArray mat, int distType, InputArray a, InputArray b)
Parameters

mat — 2D or N-dimensional matrix. Currently matrices with more than 4 channels are not
supported by the methods. Use Mat: : reshape() as a possible workaround.

distType — Distribution type, RNG: : UNIFORM or RNG: : NORMAL .

a — First distribution parameter. In case of the uniform distribution, this is an inclusive lower
boundary. In case of the normal distribution, this is a mean value.

b — Second distribution parameter. In case of the uniform distribution, this is a non-inclusive
upper boundary. In case of the normal distribution, this is a standard deviation (diagonal of
the standard deviation matrix or the full standard deviation matrix).

Each of the methods fills the matrix with the random values from the specified distribution. As the new numbers
are generated, the RNG state is updated accordingly. In case of multiple-channel images, every channel is filled
independently, which means that RNG cannot generate samples from the multi-dimensional Gaussian distribution with
non-diagonal covariance matrix directly. To do that, the method generates samples from multi-dimensional standard
Gaussian distribution with zero mean and identity covariation matrix, and then transforms them using transform()
to get samples from the specified Gaussian distribution.

randu

Generates a single uniformly-distributed random number or an array of random numbers.

C++: template<typename _Tp> _Tp randu()

146 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

C++: void randu (InputOutputArray mtx, InputArray low, InputArray high)
Python: cv2.randu(dst, low, high) — None
Parameters
mtx — Output array of random numbers. The array must be pre-allocated.
low — Inclusive lower boundary of the generated random numbers.
high — Exclusive upper boundary of the generated random numbers.

The template functions randu generate and return the next uniformly-distributed random value of the specified type.
randu<int>() is an equivalent to (int)theRNG(); , and so on. See RNG description.

The second non-template variant of the function fills the matrix mtx with uniformly-distributed random numbers from
the specified range:

lowe. < mtx(I)c < high,

See Also:
RNG, randn(), theRNG()

randn

Fills the array with normally distributed random numbers.
C++: void randn (InputOutputArray mtx, InputArray mean, InputArray stddev)
Python: cv2.randn(dst, mean, stddev) — None

Parameters

mtx — Output array of random numbers. The array must be pre-allocated and have 1 to 4
channels.

mean — Mean value (expectation) of the generated random numbers.

stddev — Standard deviation of the generated random numbers. It can be either a vector (in
which case a diagonal standard deviation matrix is assumed) or a square matrix.

The function randn fills the matrix mtx with normally distributed random numbers with the specified mean vector
and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the destination
array data type.

See Also:
RNG, randu()

randShuffle

Shuffles the array elements randomly.
C++: void randShuffle (InputOutputArray mtx, double iterFactor=1., RNG* rng=0)
Python: cv2. randShuffle(src[, dst[, iterFactor]]) — dst

Parameters

mtx — Input/output numerical 1D array.

2.4. Operations on Arrays 147

The OpenCV Reference Manual, Release 2.3.3

iterFactor — Scale factor that determines the number of random swap operations. See the
details below.

rng — Optional random number generator used for shuffling. If it is zero, theRNG() () is
used instead.

The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and swapping
them. The number of such swap operations will be mtx. rows*mtx.cols*iterFactor.

See Also:
RNG, sort ()

reduce

Reduces a matrix to a vector.
C++: void reduce (InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype=-1)
Python: cv2.reduce(src, dim, rtype[, dst[, dtype]]) — dst
C: void cvReduce (const CvArr* sre, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
Python: cv.Reduce (src, dst, dim=-1, op=CV_REDUCE_SUM) — None
Parameters
mtx — Source 2D matrix.
vec — Destination vector. Its size and type is defined by dim and dtype parameters.

dim — Dimension index along which the matrix is reduced. O means that the matrix is
reduced to a single row. 1 means that the matrix is reduced to a single column.

reduceOp — Reduction operation that could be one of the following:
— CV_REDUCE_SUM The output is the sum of all rows/columns of the matrix.
— CV_REDUCE_AVG The output is the mean vector of all rows/columns of the matrix.

— CV_REDUCE_MAX The output is the maximum (column/row-wise) of all
rows/columns of the matrix.

— CV_REDUCE_MIN The output is the minimum (column/row-wise) of all rows/columns
of the matrix.

dtype — When it is negative, the destination vector will have the same type as the
source matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype),
mtx.channels()) .

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and per-
forming the specified operation on the vectors until a single row/column is obtained. For example, the function can be
used to compute horizontal and vertical projections of a raster image. In case of CV_REDUCE_SUM and CV_REDUCE_AVG
, the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in
these two reduction modes.

See Also:

repeat()

148 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

repeat

Fills the destination array with repeated copies of the source array.
C++: void repeat (InputArray sre, int ny, int nx, OutputArray dst)
C++: Mat repeat (InputArray sre, int ny, int nx)
Python: cv2.repeat(src, ny, nx[, dst]) — dst
C: void cvRepeat (const CvArr* sre, CvArr* dst)
Python: cv.Repeat (src, dst) — None
Parameters
src — Source array to replicate.
dst — Destination array of the same type as src .
ny — Flag to specify how many times the src is repeated along the vertical axis.
nx — Flag to specify how many times the src is repeated along the horizontal axis.

The functions repeat () duplicate the source array one or more times along each of the two axes:

dStij = SICi mod stc.rows,j mod sTc.cols

The second variant of the function is more convenient to use with Matrix Expressions .
See Also:

reduce (), Matrix Expressions

scaleAdd

Calculates the sum of a scaled array and another array.
C++: void scaleAdd (InputArray srcl, double scale, InputArray src2, OutputArray dst)
Python: cv2.scaleAdd(srcl, alpha, src2[, dst]) — dst
C: void cvScaleAdd (const CvArr* srcl, CvScalar scale, const CvArr* src2, CvArr* dst)
Python: cv.ScaleAdd (srcl, scale, src2, dst) — None
Parameters

srcl — First source array.

scale — Scale factor for the first array.

src2 — Second source array of the same size and type as srcl.

dst — Destination array of the same size and type as srcl.

The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY or SAXPY in BLAS.
It calculates the sum of a scaled array and another array:

dst(I) = scale- srcl(I) + src2(I)

The function can also be emulated with a matrix expression, for example:

Mat A(3, 3, CV_64F);

A.row(0) = A.row(1l)*2 + A.row(2);

2.4. Operations on Arrays 149

http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

The OpenCV Reference Manual, Release 2.3.3

See Also:

add (), addWeighted(), subtract(),Mat::dot(),Mat::convertTo(), Matrix Expressions

setldentity

Initializes a scaled identity matrix.
C++: void setIdentity (InputOutputArray dst, const Scalar& value=Scalar(1))
Python: cv2. setIdentity(mtx[, s]) — None
C: void cvSetIdentity (CvArr* mat, CvScalar value=cvRealScalar(1))
Python: cv.SetIdentity(mat, value=1) — None
Parameters
dst — Matrix to initialize (not necessarily square).
value — Value to assign to diagonal elements.

The function setIdentity() initializes a scaled identity matrix:

.. value ifi=j
dst(i,j) = .
(1) { 0 otherwise
The function can also be emulated using the matrix initializers and the matrix expressions:

Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, O, O]]

See Also:

Mat::zeros(),Mat: :ones(), Matrix Expressions, Mat: :setTo(),Mat::operator=()

solve

Solves one or more linear systems or least-squares problems.
C++: bool solve(InputArray srecl, InputArray src2, OutputArray dst, int flags=DECOMP_LU)
Python: cv2.solve(srcl, src2[, dst[, ﬂags]]) — retval, dst
C: int cvSolve(const CvArr* srcl, const CvArr* src2, CvArr* dst, int method=CV_LU)
Python: cv.Solve(A, B, X, method=CV_LU) — None
Parameters

srcl — Input matrix on the left-hand side of the system.

src2 — Input matrix on the right-hand side of the system.

dst — Output solution.

flags — Solution (matrix inversion) method.

— DECOMP_LU Gaussian elimination with optimal pivot element chosen.

- DECOMP_CHOLESKY Cholesky LLT factorization. The matrix src1 must be sym-
metrical and positively defined.

— DECOMP_EIG Eigenvalue decomposition. The matrix srcl must be symmetrical.

150 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

— DECOMP_SVD Singular value decomposition (SVD) method. The system can be over-
defined and/or the matrix srcl can be singular.

— DECOMP_QR QR factorization. The system can be over-defined and/or the matrix srcl
can be singular.

— DECOMP_NORMAL While all the previous flags are mutually exclusive, this flag can
be used together with any of the previous. It means that the normal equations src1' -
srcl-dst = srcl'src2 are solved instead of the original system srcl-dst = src2.

The function solve solves a linear system or least-squares problem (the latter is possible with SVD or QR methods,
or by specifying the flag DECOMP_NORMAL):

dst = argm)}n ||srcl-X—src2||

If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 if srcl (or srcl¥srcl) is non-singular.
Otherwise, it returns 0. In the latter case, dst is not valid. Other methods find a pseudo-solution in case of a singular
left-hand side part.

Note: If you want to find a unity-norm solution of an under-defined singular system srcl - dst = O, the function
solve will not do the work. Use SVD: :solveZ() instead.

See Also:

invert(), SVD, eigen()

solveCubic

Finds the real roots of a cubic equation.
C++: void solveCubic (InputArray coeffs, OutputArray roots)
Python: cv2.solveCubic (coeffs[, roots]) — retval, roots
C: void cvSolveCubic (const CvArr* coeffs, CvArr* roots)
Python: cv.SolveCubic (coeffs, roots) — None
Parameters
coeffs — Equation coefficients, an array of 3 or 4 elements.
roots — Destination array of real roots that has 1 or 3 elements.
The function solveCubic finds the real roots of a cubic equation:

¢ if coeffs is a 4-element vector:

coeffs[0]x> + coeffs[1]x? + coeffs[2]x + coeffs[3] =0

e if coeffs is a 3-element vector:

x> + coeffs[0]x? + coeffs[1]x + coeffs[2] =0

The roots are stored in the roots array.

2.4. Operations on Arrays 151

The OpenCV Reference Manual, Release 2.3.3

solvePoly

Finds the real or complex roots of a polynomial equation.
C++: void solvePoly (InputArray coeffs, OutputArray roots, int maxIters=300)
Python: cv2. solvePoly(coeffs[, roots[, maxlters]]) — retval, roots
Parameters
coeffs — Array of polynomial coefficients.
roots — Destination (complex) array of roots.
maxlIters — Maximum number of iterations the algorithm does.

The function solvePoly finds real and complex roots of a polynomial equation:

coeffs[n)x™ + coeffsn — 1]x™' + ... + coeffs[1]x + coeffs[0] =0

sort

Sorts each row or each column of a matrix.
C++: void sort (InputArray src, OutputArray dst, int flags)
Python: cv2.sort(src, ﬂags[, dst]) — dst
Parameters
src — Source single-channel array.
dst — Destination array of the same size and type as src .
flags — Operation flags, a combination of the following values:
— CV_SORT_EVERY_ROW Each matrix row is sorted independently.

— CV_SORT_EVERY_COLUMN Each matrix column is sorted independently. This flag
and the previous one are mutually exclusive.

— CV_SORT_ASCENDING Each matrix row is sorted in the ascending order.

— CV_SORT_DESCENDING Each matrix row is sorted in the descending order. This flag
and the previous one are also mutually exclusive.

The function sort sorts each matrix row or each matrix column in ascending or descending order. So you should pass
two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can
use STL std: : sort generic function with the proper comparison predicate.

See Also:
sortIdx(), randShuffle()

sortldx

Sorts each row or each column of a matrix.
C++: void sortIdx(InputArray src, OutputArray dst, int flags)
Python: cv2.sortIdx(src, ﬂags[, dst]) — dst

Parameters

152 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

src — Source single-channel array.

dst — Destination integer array of the same size as src .

flags — Operation flags that could be a combination of the following values:
— CV_SORT_EVERY_ROW Each matrix row is sorted independently.

— CV_SORT_EVERY_COLUMN Each matrix column is sorted independently. This flag
and the previous one are mutually exclusive.

— CV_SORT_ASCENDING Each matrix row is sorted in the ascending order.

— CV_SORT_DESCENDING Each matrix row is sorted in the descending order. This flag
and the previous one are also mutually exclusive.

The function sortIdx sorts each matrix row or each matrix column in the ascending or descending order. So you
should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the
indices of sorted elements in the destination array. For example:

Mat A = Mat::eye(3,3,CV_32F), B;

sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);

// B will probably contain

// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]

See Also:
sort(), randShuffle()

split

Divides a multi-channel array into several single-channel arrays.
C++: void split(const Mat& mtx, Mat* mv)
C++: void split(const Mat& mtx, vector<Mat>& mv)
Python: cv2.split(m, mv) — None
C: void cvSplit (const CvArr* sre, CvArr* dst0, CvArr* dstl, CvArr* dst2, CvArr* dst3)
Python: cv.Split(src, dstO, dstl, dst2, dst3) — None

Parameters

mtx — Source multi-channel array.

my — Destination array or vector of arrays. In the first variant of the function the number of
arrays must match mtx.channels () . The arrays themselves are reallocated, if needed.

The functions split split a multi-channel array into separate single-channel arrays:
mv[c](I) = mtx(I)

If you need to extract a single channel or do some other sophisticated channel permutation, use mixChannels() .
See Also:

merge(), mixChannels(), cvtColor()

2.4. Operations on Arrays 153

The OpenCV Reference Manual, Release 2.3.3

sqrt

Calculates a quare root of array elements.
C++: void sqrt (InputArray src, OutputArray dst)
Python: cv2.sqrt (src[, dst]) — dst
C: float cvSqrt (float value)
Python: cv.Sqrt(value) — float
Parameters
src — Source floating-point array.
dst — Destination array of the same size and type as src .

The functions sqrt calculate a square root of each source array element. In case of multi-channel arrays, each channel
is processed independently. The accuracy is approximately the same as of the built-in std: :sqrt .

See Also:

pow(), magnitude()

subtract

Calculates the per-element difference between two arrays or array and a scalar.

C++: void subtract (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray(), int
dtype=-1)

Python: cv2.subtract(srcl, scm[, dst[, mask[, dtype]]]) — dst
C: void cvSub (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvSubRS (const CvArr* srel, CvScalar src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvSubS (const CvArr* srcl, CvScalar src2, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Sub(srcl, src2, dst, mask=None) — None
Python: cv.SubRS (srcl, src2, dst, mask=None) — None
Python: cv.SubS(srcl, src2, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array of the same size and the same number of channels as the input array.

mask — Optional operation mask. This is an 8-bit single channel array that specifies ele-
ments of the destination array to be changed.

dtype — Optional depth of the output array. See the details below.
The function subtract computes:

« Difference between two arrays, when both input arrays have the same size and the same number of channels:

dst(I) = saturate(srcl(I) —src2(I)) if mask(I) #0

154 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

* Difference between an array and a scalar, when src2 is constructed from Scalar or has the same number of
elements as srcl.channels():

dst(I) = saturate(srcl(I) —src2) if mask(I) #0

* Difference between a scalar and an array, when srcl is constructed from Scalar or has the same number of
elements as src2.channels():

dst(I) = saturate(srcl —src2(I)) if mask(I) #0

* The reverse difference between a scalar and an array in the case of SubRS:

dst(I) = saturate(src2 —srcl(I)) if mask(I) #0

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed
independently.

The first function in the list above can be replaced with matrix expressions:

dst = srcl - src2;
dst -= srcl; // equivalent to subtract(dst, srcl, dst);

The input arrays and the destination array can all have the same or different depths. For example, you can subtract to 8-
bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by dtype
parameter. In the second and third cases above, as well as in the first case, when srcl.depth() == src2.depth(),
dtype can be set to the default - 1. In this case the output array will have the same depth as the input array, be it srcl,
src2 or both.

See Also:

add (), addwWeighted(), scaleAdd(),Mat: :convertTo(), Matrix Expressions

SVD

class SVD

Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is
used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers,
and so on.

For a faster operation, you can pass flags=SVD: :MODIFY_A|... to modify the decomposed matrix when it is not
necessary to preserve it. If you want to compute a condition number of a matrix or an absolute value of its determinant,
you do not need u and vt . You can pass flags=SVD::NO_UV|... . Another flag FULL UV indicates that full-size u
and vt must be computed, which is not necessary most of the time.

See Also:

invert(), solve(), eigen(), determinant()

SVD::SVD

The constructors.
C++: SVD::SVD()
C++: SVD::SVD(InputArray A, int flags=0)

Parameters

2.4. Operations on Arrays 155

The OpenCV Reference Manual, Release 2.3.3

src — Decomposed matrix.
flags — Operation flags.

— SVD::MODIFY_A Use the algorithm to modify the decomposed matrix. It can save
space and speed up processing.

— SVD::NO_UYV Indicate that only a vector of singular values w is to be computed, while u
and vt will be set to empty matrices.

— SVD::FULL_UYV When the matrix is not square, by default the algorithm produces u
and vt matrices of sufficiently large size for the further A reconstruction. If, however,
FULL_UV flag is specified, u and vt will be full-size square orthogonal matrices.

The first constructor initializes an empty SVD structure. The second constructor initializes an empty SVD structure and
then calls SVD: :operator() .

SVD::operator ()

Performs SVD of a matrix.
C++: SVD& SVD: :operator() (InputArray sre, int flags=0)
Parameters
src¢ — Decomposed matrix.
flags — Operation flags.

— SVD::MODIFY_A Use the algorithm to modify the decomposed matrix. It can save
space and speed up processing.

— SVD::NO_UYV Use only singular values. The algorithm does not compute u and vt
matrices.

— SVD::FULL_UV When the matrix is not square, by default the algorithm produces u
and vt matrices of sufficiently large size for the further A reconstruction. If, however, the
FULL_UV flag is specified, u and vt are full-size square orthogonal matrices.

The operator performs the singular value decomposition of the supplied matrix. The u,*‘vt*‘, and the vector of singular
values w are stored in the structure. The same SVD structure can be reused many times with different matrices. Each
time, if needed, the previous u,*‘vt*‘ , and w are reclaimed and the new matrices are created, which is all handled by
Mat::create() .

SVD::compute

Performs SVD of a matrix

C++: static void SVD: : compute (InputArray sre, OutputArray w, OutputArray u, OutputArray vt, int flags=0
)
C++: static void SVD: : compute (InputArray src, OutputArray w, int flags=0)

Python: cv2. SVDecomp(src[, w[, u[, Vt[, ﬂags]]]]) — W, u, vt
C: void cvSVD (CvArr* sre, CvArr* w, CvArr* u=NULL, CvArr* v=NULL, int flags=0)
Python: cv.SVD(src, w, u=None, v=None, flags=0) — None

Parameters

src — Decomposed matrix

156 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

w — Computed singular values

u — Computed left singular vectors

v — Computed right singular vectors

vt — Transposed matrix of right singular values
flags — Opertion flags - see SVD: :SVD().

The methods/functions perform SVD of matrix. Unlike SVD: : SVD constructor and SVD: :operator(), they store the
results to the user-provided matrices.

Mat A, w, u, vt;
SVD: :compute(A, w, u, vt);

SVD::solveZ

Solves an under-determined singular linear system.
C++: static void SVD: : solveZ (InputArray srec, OutputArray dst)
Parameters
src — Left-hand-side matrix.
dst — Found solution.

The method finds a unit-length solution x of a singular linear system Axx = 0. Depending on the rank of A, there can
be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following
problem:

dst =arg min |src-x||
x:||x||=1

SVD::backSubst

Performs a singular value back substitution.
C++: void SVD: :backSubst (InputArray rhs, OutputArray dst) const

C++: static void SVD: :backSubst (InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray
dst)

Python: cv2.SVBackSubst(w, u, vt, rhs[, dst]) — dst
C: void cvSVBkSb (const CvArr* w, const CvArr* u, const CvArr* v, const CvArr* rhs, CvArr* dst, int flags)
Python: cv.SVBkSb(w, u, v, rhs, dst, flags) — None
Parameters

w — Singular values

u — Left singular vectors

v — Right singular vectors

vt — Transposed matrix of right singular vectors.

rhs — Right-hand side of a linear system (u*xwxv')*dst = rhs to be solved, where A has
been previously decomposed.

dst — Found solution of the system.

2.4. Operations on Arrays 157

The OpenCV Reference Manual, Release 2.3.3

The method computes a back substitution for the specified right-hand side:
x=vt' -diag(w)™'-u'-rhs~A"".rhs

Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the
least-squares terms) pseudo-solution of an overdetermined linear system.

Note: Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems
with the same left-hand side (for example, src). If all you need is to solve a single system (possibly with multiple
rhs immediately available), simply call solve() add pass DECOMP_SVD there. It does absolutely the same thing.

sum

Calculates the sum of array elements.
C++: Scalar sum(InputArray arr)
Python: cv2.sumElems (arr) — retval
C: CvScalar cvSum(const CvArr™* arr)
Python: cv.Sum(arr) — CvScalar

Parameters

arr — Source array that must have from 1 to 4 channels.

The functions sum calculate and return the sum of array elements, independently for each channel.
See Also:

countNonZero(), mean(), meanStdDev (), norm(), minMaxLoc(), reduce()

theRNG

Returns the default random number generator.
C++: RNG& theRNG()

The function theRNG returns the default random number generator. For each thread, there is a separate random number
generator, so you can use the function safely in multi-thread environments. If you just need to get a single random
number using this generator or initialize an array, you can use randu() or randn() instead. But if you are going to
generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then
use RNG: :operator _Tp() .

See Also:

RNG, randu(), randn()

trace

Returns the trace of a matrix.
C++: Scalar trace (InputArray mat)
Python: cv2.trace(mat) — retval

C: CvScalar cvTrace(const CvArr* mat)

158 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Python: cv.Trace(mat) — CvScalar
Parameters
mtx — Source matrix.

The function trace returns the sum of the diagonal elements of the matrix mtx .

tr(mtx) =) mtx(i,1)

transform

Performs the matrix transformation of every array element.
C++: void transform(InputArray src, OutputArray dst, InputArray mtx)
Python: cv2.transform(src, mtx[, dst]) — dst
C: void cvTransform(const CvArr* src, CvArr* dst, const CvMat* mtx, const CvMat* shiftvec=NULL)
Python: cv.Transform(src, dst, mtx, shiftvec=None) — None
Parameters
src — Source array that must have as many channels (1 to 4) as mtx.cols or mtx.cols-1.

dst — Destination array of the same size and depth as src . It has as many channels as
mtx. rows .

mtx — Transformation 2x2 or 2x3 floating-point matrix.
shiftvec — Optional translation vector (when mtx is 2x2)

The function transform performs the matrix transformation of every element of the array src and stores the results
indst:

dst(I) =mtx - src(I)
(when mtx.cols=src.channels()), or
dst(I) = mtx - [src(I);1]

(when mtx.cols=src.channels()+1)

Every element of the N -channel array src is interpreted as N -element vector that is transformed using the M x NorM
x (N+1) matrix mtx to M-element vector - the corresponding element of the destination array dst .

The function may be used for geometrical transformation of N -dimensional points, arbitrary linear color space trans-
formation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

See Also:

perspectiveTransform(), getAffineTransform(), estimateRigidTransform(), warpAffine(),
warpPerspective()

transpose

Transposes a matrix.
C++: void transpose (InputArray src, OutputArray dst)

Python: cv2.transpose(src[, dst]) — dst

2.4. Operations on Arrays 159

The OpenCV Reference Manual, Release 2.3.3

C: void cvTranspose (const CvArr* src, CvArr* dst)
Python: cv.Transpose(src, dst) — None
Parameters
src — Source array.
dst — Destination array of the same type as src .

The function transpose() transposes the matrix src :

dSt(i)j) = SI'C(]',i)

Note: No complex conjugation is done in case of a complex matrix. It it should be done separately if needed.

2.5 Drawing Functions

Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be rendered with
antialiasing (implemented only for 8-bit images for now). All the functions include the parameter color that uses
an RGB value (that may be constructed with CV_RGB or the Scalar_ constructor) for color images and brightness
for grayscale images. For color images, the channel ordering is normally Blue, Green, Red. This is what imshow(),
imread(), and imwrite() expect. So, if you form a color using the Scalar constructor, it should look like:

Scalar(blue_component, green_component, red_component[, alpha_component])

If you are using your own image rendering and I/O functions, you can use any channel ordering. The drawing functions
process each channel independently and do not depend on the channel order or even on the used color space. The whole
image can be converted from BGR to RGB or to a different color space using cvtColor() .

If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, many drawing
functions can handle pixel coordinates specified with sub-pixel accuracy. This means that the coordinates can be
passed as fixed-point numbers encoded as integers. The number of fractional bits is specified by the shift parameter
and the real point coordinates are calculated as Point(x,y) — Point2f(x x 27 Shift y s 2=shifty Thig feature is
especially effective when rendering antialiased shapes.

Note: The functions do not support alpha-transparency when the target image is 4-channel. In this case, the color[3]
is simply copied to the repainted pixels. Thus, if you want to paint semi-transparent shapes, you can paint them in a
separate buffer and then blend it with the main image.

circle

Draws a circle.

C++: void circle(Mat& img, Point center, int radius, const Scalar& color, int thickness=1, int lineType=8,
int shift=0)

Python: cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) — None

C: void cvCircle(CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int lineType=8,
int shift=0)

Python: cv.Circle(img, center, radius, color, thickness=1, lineType=8, shift=0) — None

160 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Parameters
img — Image where the circle is drawn.
center — Center of the circle.
radius — Radius of the circle.
color — Circle color.

thickness — Thickness of the circle outline, if positive. Negative thickness means that a
filled circle is to be drawn.

lineType — Type of the circle boundary. See the line() description.
shift — Number of fractional bits in the coordinates of the center and in the radius value.

The function circle draws a simple or filled circle with a given center and radius.

clipLine

Clips the line against the image rectangle.

C++: bool clipLine(Size imgSize, Point& ptl, Point& pt2)

C++: bool clipLine(Rect imgRect, Point& ptl, Point& pt2)

Python: cv2.cliplLine(imgRect, ptl, pt2) — retval, ptl, pt2

C: int cvClipLine(CvSize imgSize, CvPoint* ptl, CvPoint* pt2)

Python: cv.ClipLine(imgSize, ptl, pt2) -> (clippedPtl, clippedPt2)
Parameters

imgSize — Image size. The image rectangle is Rect(0, 0, imgSize.width,
imgSize.height) .

imgRect — Image rectangle.
pt1 — First line point.
pt2 — Second line point.

The functions clipLine calculate a part of the line segment that is entirely within the specified rectangle. They return
false if the line segment is completely outside the rectangle. Otherwise, they return true .

ellipse

Draws a simple or thick elliptic arc or fills an ellipse sector.

C++: void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle,
const Scalar& color, int thickness=1, int lineType=8, int shift=0)

C++: void ellipse(Mat& img, const RotatedRect& box, const Scalar& color, int thickness=1, int line-

Type=8)

Python: cv2.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]
]) — None

Python: cv2.ellipse(img, box, color[, thickness[, lineType]]) — None

C: void cvEllipse (CvArr* img, CvPoint center, CvSize axes, double angle, double startAngle, double en-
dAngle, CvScalar color, int thickness=1, int lineType=8, int shift=0)

2.5. Drawing Functions 161

The OpenCV Reference Manual, Release 2.3.3

Python: cv.Ellipse(img, center, axes, angle, startAngle, endAngle, color, thickness=1, lineType=8, shift=0)

— None

C: void cvEllipseBox (CvArr* img, CvBox2D box, CvScalar color, int thickness=1, int lineType=8, int

shift=0)

Python: cv.EllipseBox (img, box, color, thickness=1, lineType=8, shift=0) — None

The functions ellipse with less parameters draw an ellipse outline, a filled ellipse, an elliptic arc, or a filled ellipse
sector. A piecewise-linear curve is used to approximate the elliptic arc boundary. If you need more control of the
ellipse rendering, you can retrieve the curve using ellipse2Poly () and then render it with polylines() or fill it
with fillPoly() . If you use the first variant of the function and want to draw the whole ellipse, not an arc, pass

Parameters

img — Image.

center — Center of the ellipse.

axes — Length of the ellipse axes.

angle — Ellipse rotation angle in degrees.

startAngle — Starting angle of the elliptic arc in degrees.
endAngle — Ending angle of the elliptic arc in degrees.

box — Alternative ellipse representation via RotatedRect or CvBox2D. This means that the
function draws an ellipse inscribed in the rotated rectangle.

color — Ellipse color.

thickness — Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that a
filled ellipse sector is to be drawn.

lineType — Type of the ellipse boundary. See the Line() description.

shift — Number of fractional bits in the coordinates of the center and values of axes.

startAngle=0 and endAngle=360 . The figure below explains the meaning of the parameters.

Figure 1. Parameters of Elliptic Arc

162

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.3.3

Startirg Sngle of the Arc

Eotaion e

ellipse2Poly

Approximates an elliptic arc with a polyline.

C++: void ellipse2Poly (Point center, Size axes, int angle, int startAngle, int endAngle, int delta, vec-
tor<Point>& pts)

Python: cv2.ellipse2Poly (center, axes, angle, arcStart, arcEnd, delta) — pts
Parameters
center — Center of the arc.
axes — Half-sizes of the arc. See the ellipse() for details.
angle — Rotation angle of the ellipse in degrees. See the ellipse() for details.
startAngle — Starting angle of the elliptic arc in degrees.
endAngle — Ending angle of the elliptic arc in degrees.

delta — Angle between the subsequent polyline vertices. It defines the approximation accu-
racy.

pts — Output vector of polyline vertices.

The function ellipse2Poly computes the vertices of a polyline that approximates the specified elliptic arc. It is used
by ellipse() .

fillConvexPoly

Fills a convex polygon.

C++: void fillConvexPoly (Mat& img, const Point* pts, int npts, const Scalar& color, int lineType=8, int
shift=0)

2.5. Drawing Functions 163

The OpenCV Reference Manual, Release 2.3.3

Python: cv2.fillConvexPoly (img, points, color[, lineType[, shift]]) — None

C: void cvFillConvexPoly (CvArr* img, CvPoint* pts, int npts, CvScalar color, int lineType=38, int shift=0
)
Python: cv.FillConvexPoly (img, pn, color, lineType=8, shift=0) — None

Parameters
img — Image.
pts — Polygon vertices.
npts — Number of polygon vertices.
color — Polygon color.
lineType — Type of the polygon boundaries. See the 1ine () description.
shift — Number of fractional bits in the vertex coordinates.

The function fillConvexPoly draws a filled convex polygon. This function is much faster than the function
fillPoly . It can fill not only convex polygons but any monotonic polygon without self-intersections, that is, a
polygon whose contour intersects every horizontal line (scan line) twice at the most (though, its top-most and/or the
bottom edge could be horizontal).

fillPoly

Fills the area bounded by one or more polygons.

C++: void fillPoly (Mat& img, const Point** pts, const int* npts, int ncontours, const Scalar& color, int
lineType=8, int shift=0, Point offset=Point())

Python: cv2.fillPoly (img, pts, color[, lineType[, shift[, offset]]]) — None

C: void cvFillPoly (CvArr* img, CvPoint** pts, int* npts, int contours, CvScalar color, int lineType=8, int
shift=0)

Python: cv.FillPoly(img, polys, color, lineType=8, shift=0) — None
Parameters
img — Image.
pts — Array of polygons where each polygon is represented as an array of points.
npts — Array of polygon vertex counters.
ncontours — Number of contours that bind the filled region.
color — Polygon color.
lineType — Type of the polygon boundaries. See the 1ine() description.
shift — Number of fractional bits in the vertex coordinates.

The function fillPoly fills an area bounded by several polygonal contours. The function can fill complex areas, for
example, areas with holes, contours with self-intersections (some of thier parts), and so forth.

getTextSize

Calculates the width and height of a text string.

C++: Size getTextSize (const string&