/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2014, Itseez, Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" namespace cv { // Classical Hough Transform struct LinePolar { float rho; float angle; }; struct hough_cmp_gt { hough_cmp_gt(const int* _aux) : aux(_aux) {} bool operator()(int l1, int l2) const { return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2); } const int* aux; }; /* Here image is an input raster; step is it's step; size characterizes it's ROI; rho and theta are discretization steps (in pixels and radians correspondingly). threshold is the minimum number of pixels in the feature for it to be a candidate for line. lines is the output array of (rho, theta) pairs. linesMax is the buffer size (number of pairs). Functions return the actual number of found lines. */ static void HoughLinesStandard( const Mat& img, float rho, float theta, int threshold, std::vector& lines, int linesMax, double min_theta, double max_theta ) { int i, j; float irho = 1 / rho; CV_Assert( img.type() == CV_8UC1 ); const uchar* image = img.ptr(); int step = (int)img.step; int width = img.cols; int height = img.rows; if (max_theta < min_theta ) { CV_Error( CV_StsBadArg, "max_theta must be greater than min_theta" ); } int numangle = cvRound((max_theta - min_theta) / theta); int numrho = cvRound(((width + height) * 2 + 1) / rho); #if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && IPP_DISABLE_BLOCK CV_IPP_CHECK() { IppiSize srcSize = { width, height }; IppPointPolar delta = { rho, theta }; IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}}; int bufferSize; int nz = countNonZero(img); int ipp_linesMax = std::min(linesMax, nz*numangle/threshold); int linesCount = 0; lines.resize(ipp_linesMax); IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize); Ipp8u* buffer = ippsMalloc_8u(bufferSize); if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R,(image, step, srcSize, (IppPointPolar*) &lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer))}; ippsFree(buffer); if (ok >= 0) { lines.resize(linesCount); CV_IMPL_ADD(CV_IMPL_IPP); return; } lines.clear(); setIppErrorStatus(); } #endif AutoBuffer _accum((numangle+2) * (numrho+2)); std::vector _sort_buf; AutoBuffer _tabSin(numangle); AutoBuffer _tabCos(numangle); int *accum = _accum; float *tabSin = _tabSin, *tabCos = _tabCos; memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) ); float ang = static_cast(min_theta); for(int n = 0; n < numangle; ang += theta, n++ ) { tabSin[n] = (float)(sin((double)ang) * irho); tabCos[n] = (float)(cos((double)ang) * irho); } // stage 1. fill accumulator for( i = 0; i < height; i++ ) for( j = 0; j < width; j++ ) { if( image[i * step + j] != 0 ) for(int n = 0; n < numangle; n++ ) { int r = cvRound( j * tabCos[n] + i * tabSin[n] ); r += (numrho - 1) / 2; accum[(n+1) * (numrho+2) + r+1]++; } } // stage 2. find local maximums for(int r = 0; r < numrho; r++ ) for(int n = 0; n < numangle; n++ ) { int base = (n+1) * (numrho+2) + r+1; if( accum[base] > threshold && accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) _sort_buf.push_back(base); } // stage 3. sort the detected lines by accumulator value std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum)); // stage 4. store the first min(total,linesMax) lines to the output buffer linesMax = std::min(linesMax, (int)_sort_buf.size()); double scale = 1./(numrho+2); for( i = 0; i < linesMax; i++ ) { LinePolar line; int idx = _sort_buf[i]; int n = cvFloor(idx*scale) - 1; int r = idx - (n+1)*(numrho+2) - 1; line.rho = (r - (numrho - 1)*0.5f) * rho; line.angle = static_cast(min_theta) + n * theta; lines.push_back(Vec2f(line.rho, line.angle)); } } // Multi-Scale variant of Classical Hough Transform struct hough_index { hough_index() : value(0), rho(0.f), theta(0.f) {} hough_index(int _val, float _rho, float _theta) : value(_val), rho(_rho), theta(_theta) {} int value; float rho, theta; }; static void HoughLinesSDiv( const Mat& img, float rho, float theta, int threshold, int srn, int stn, std::vector& lines, int linesMax, double min_theta, double max_theta ) { #define _POINT(row, column)\ (image_src[(row)*step+(column)]) int index, i; int ri, ti, ti1, ti0; int row, col; float r, t; /* Current rho and theta */ float rv; /* Some temporary rho value */ int fn = 0; float xc, yc; const float d2r = (float)(CV_PI / 180); int sfn = srn * stn; int fi; int count; int cmax = 0; std::vector lst; CV_Assert( img.type() == CV_8UC1 ); CV_Assert( linesMax > 0 ); threshold = MIN( threshold, 255 ); const uchar* image_src = img.ptr(); int step = (int)img.step; int w = img.cols; int h = img.rows; float irho = 1 / rho; float itheta = 1 / theta; float srho = rho / srn; float stheta = theta / stn; float isrho = 1 / srho; float istheta = 1 / stheta; int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho ); int tn = cvFloor( 2 * CV_PI * itheta ); lst.push_back(hough_index(threshold, -1.f, 0.f)); // Precalculate sin table std::vector _sinTable( 5 * tn * stn ); float* sinTable = &_sinTable[0]; for( index = 0; index < 5 * tn * stn; index++ ) sinTable[index] = (float)cos( stheta * index * 0.2f ); std::vector _caccum(rn * tn, (uchar)0); uchar* caccum = &_caccum[0]; // Counting all feature pixels for( row = 0; row < h; row++ ) for( col = 0; col < w; col++ ) fn += _POINT( row, col ) != 0; std::vector _x(fn), _y(fn); int* x = &_x[0], *y = &_y[0]; // Full Hough Transform (it's accumulator update part) fi = 0; for( row = 0; row < h; row++ ) { for( col = 0; col < w; col++ ) { if( _POINT( row, col )) { int halftn; float r0; float scale_factor; int iprev = -1; float phi, phi1; float theta_it; // Value of theta for iterating // Remember the feature point x[fi] = col; y[fi] = row; fi++; yc = (float) row + 0.5f; xc = (float) col + 0.5f; /* Update the accumulator */ t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ); r0 = r * irho; ti0 = cvFloor( (t + CV_PI*0.5) * itheta ); caccum[ti0]++; theta_it = rho / r; theta_it = theta_it < theta ? theta_it : theta; scale_factor = theta_it * itheta; halftn = cvFloor( CV_PI / theta_it ); for( ti1 = 1, phi = theta_it - (float)(CV_PI*0.5), phi1 = (theta_it + t) * itheta; ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor ) { rv = r0 * std::cos( phi ); i = (int)rv * tn; i += cvFloor( phi1 ); assert( i >= 0 ); assert( i < rn * tn ); caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0)); iprev = i; if( cmax < caccum[i] ) cmax = caccum[i]; } } } } // Starting additional analysis count = 0; for( ri = 0; ri < rn; ri++ ) { for( ti = 0; ti < tn; ti++ ) { if( caccum[ri * tn + ti] > threshold ) count++; } } if( count * 100 > rn * tn ) { HoughLinesStandard( img, rho, theta, threshold, lines, linesMax, min_theta, max_theta ); return; } std::vector _buffer(srn * stn + 2); uchar* buffer = &_buffer[0]; uchar* mcaccum = buffer + 1; count = 0; for( ri = 0; ri < rn; ri++ ) { for( ti = 0; ti < tn; ti++ ) { if( caccum[ri * tn + ti] > threshold ) { count++; memset( mcaccum, 0, sfn * sizeof( uchar )); for( index = 0; index < fn; index++ ) { int ti2; float r0; yc = (float) y[index] + 0.5f; xc = (float) x[index] + 0.5f; // Update the accumulator t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho; ti0 = cvFloor( (t + CV_PI * 0.5) * istheta ); ti2 = (ti * stn - ti0) * 5; r0 = (float) ri *srn; for( ti1 = 0; ti1 < stn; ti1++, ti2 += 5 ) { rv = r * sinTable[(int) (std::abs( ti2 ))] - r0; i = cvFloor( rv ) * stn + ti1; i = CV_IMAX( i, -1 ); i = CV_IMIN( i, sfn ); mcaccum[i]++; assert( i >= -1 ); assert( i <= sfn ); } } // Find peaks in maccum... for( index = 0; index < sfn; index++ ) { i = 0; int pos = (int)(lst.size() - 1); if( pos < 0 || lst[pos].value < mcaccum[index] ) { hough_index vi(mcaccum[index], index / stn * srho + ri * rho, index % stn * stheta + ti * theta - (float)(CV_PI*0.5)); lst.push_back(vi); for( ; pos >= 0; pos-- ) { if( lst[pos].value > vi.value ) break; lst[pos+1] = lst[pos]; } lst[pos+1] = vi; if( (int)lst.size() > linesMax ) lst.pop_back(); } } } } } for( size_t idx = 0; idx < lst.size(); idx++ ) { if( lst[idx].rho < 0 ) continue; lines.push_back(Vec2f(lst[idx].rho, lst[idx].theta)); } } /****************************************************************************************\ * Probabilistic Hough Transform * \****************************************************************************************/ static void HoughLinesProbabilistic( Mat& image, float rho, float theta, int threshold, int lineLength, int lineGap, std::vector& lines, int linesMax ) { Point pt; float irho = 1 / rho; RNG rng((uint64)-1); CV_Assert( image.type() == CV_8UC1 ); int width = image.cols; int height = image.rows; int numangle = cvRound(CV_PI / theta); int numrho = cvRound(((width + height) * 2 + 1) / rho); #if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && IPP_DISABLE_BLOCK CV_IPP_CHECK() { IppiSize srcSize = { width, height }; IppPointPolar delta = { rho, theta }; IppiHoughProbSpec* pSpec; int bufferSize, specSize; int ipp_linesMax = std::min(linesMax, numangle*numrho); int linesCount = 0; lines.resize(ipp_linesMax); IppStatus ok = ippiHoughProbLineGetSize_8u_C1R(srcSize, delta, &specSize, &bufferSize); Ipp8u* buffer = ippsMalloc_8u(bufferSize); pSpec = (IppiHoughProbSpec*) malloc(specSize); if (ok >= 0) ok = ippiHoughProbLineInit_8u32f_C1R(srcSize, delta, ippAlgHintNone, pSpec); if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughProbLine_8u32f_C1R,(image.data, image.step, srcSize, threshold, lineLength, lineGap, (IppiPoint*) &lines[0], ipp_linesMax, &linesCount, buffer, pSpec))}; free(pSpec); ippsFree(buffer); if (ok >= 0) { lines.resize(linesCount); CV_IMPL_ADD(CV_IMPL_IPP); return; } lines.clear(); setIppErrorStatus(); } #endif Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 ); Mat mask( height, width, CV_8UC1 ); std::vector trigtab(numangle*2); for( int n = 0; n < numangle; n++ ) { trigtab[n*2] = (float)(cos((double)n*theta) * irho); trigtab[n*2+1] = (float)(sin((double)n*theta) * irho); } const float* ttab = &trigtab[0]; uchar* mdata0 = mask.ptr(); std::vector nzloc; // stage 1. collect non-zero image points for( pt.y = 0; pt.y < height; pt.y++ ) { const uchar* data = image.ptr(pt.y); uchar* mdata = mask.ptr(pt.y); for( pt.x = 0; pt.x < width; pt.x++ ) { if( data[pt.x] ) { mdata[pt.x] = (uchar)1; nzloc.push_back(pt); } else mdata[pt.x] = 0; } } int count = (int)nzloc.size(); // stage 2. process all the points in random order for( ; count > 0; count-- ) { // choose random point out of the remaining ones int idx = rng.uniform(0, count); int max_val = threshold-1, max_n = 0; Point point = nzloc[idx]; Point line_end[2]; float a, b; int* adata = accum.ptr(); int i = point.y, j = point.x, k, x0, y0, dx0, dy0, xflag; int good_line; const int shift = 16; // "remove" it by overriding it with the last element nzloc[idx] = nzloc[count-1]; // check if it has been excluded already (i.e. belongs to some other line) if( !mdata0[i*width + j] ) continue; // update accumulator, find the most probable line for( int n = 0; n < numangle; n++, adata += numrho ) { int r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] ); r += (numrho - 1) / 2; int val = ++adata[r]; if( max_val < val ) { max_val = val; max_n = n; } } // if it is too "weak" candidate, continue with another point if( max_val < threshold ) continue; // from the current point walk in each direction // along the found line and extract the line segment a = -ttab[max_n*2+1]; b = ttab[max_n*2]; x0 = j; y0 = i; if( fabs(a) > fabs(b) ) { xflag = 1; dx0 = a > 0 ? 1 : -1; dy0 = cvRound( b*(1 << shift)/fabs(a) ); y0 = (y0 << shift) + (1 << (shift-1)); } else { xflag = 0; dy0 = b > 0 ? 1 : -1; dx0 = cvRound( a*(1 << shift)/fabs(b) ); x0 = (x0 << shift) + (1 << (shift-1)); } for( k = 0; k < 2; k++ ) { int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0; if( k > 0 ) dx = -dx, dy = -dy; // walk along the line using fixed-point arithmetics, // stop at the image border or in case of too big gap for( ;; x += dx, y += dy ) { uchar* mdata; int i1, j1; if( xflag ) { j1 = x; i1 = y >> shift; } else { j1 = x >> shift; i1 = y; } if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height ) break; mdata = mdata0 + i1*width + j1; // for each non-zero point: // update line end, // clear the mask element // reset the gap if( *mdata ) { gap = 0; line_end[k].y = i1; line_end[k].x = j1; } else if( ++gap > lineGap ) break; } } good_line = std::abs(line_end[1].x - line_end[0].x) >= lineLength || std::abs(line_end[1].y - line_end[0].y) >= lineLength; for( k = 0; k < 2; k++ ) { int x = x0, y = y0, dx = dx0, dy = dy0; if( k > 0 ) dx = -dx, dy = -dy; // walk along the line using fixed-point arithmetics, // stop at the image border or in case of too big gap for( ;; x += dx, y += dy ) { uchar* mdata; int i1, j1; if( xflag ) { j1 = x; i1 = y >> shift; } else { j1 = x >> shift; i1 = y; } mdata = mdata0 + i1*width + j1; // for each non-zero point: // update line end, // clear the mask element // reset the gap if( *mdata ) { if( good_line ) { adata = accum.ptr(); for( int n = 0; n < numangle; n++, adata += numrho ) { int r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] ); r += (numrho - 1) / 2; adata[r]--; } } *mdata = 0; } if( i1 == line_end[k].y && j1 == line_end[k].x ) break; } } if( good_line ) { Vec4i lr(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y); lines.push_back(lr); if( (int)lines.size() >= linesMax ) return; } } } #ifdef HAVE_OPENCL #define OCL_MAX_LINES 4096 static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters) { UMat src = _src.getUMat(); _pointsList.create(1, (int) src.total(), CV_32SC1); UMat pointsList = _pointsList.getUMat(); UMat counters = _counters.getUMat(); ocl::Device dev = ocl::Device::getDefault(); const int pixPerWI = 16; int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixPerWI - 1)/pixPerWI); ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc, format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols)); if (pointListKernel.empty()) return false; pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList), ocl::KernelArg::PtrWriteOnly(counters)); size_t localThreads[2] = { (size_t)workgroup_size, 1 }; size_t globalThreads[2] = { (size_t)workgroup_size, (size_t)src.rows }; return pointListKernel.run(2, globalThreads, localThreads, false); } static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_points, double rho, double theta, int numrho, int numangle) { UMat pointsList = _pointsList.getUMat(); _accum.create(numangle + 2, numrho + 2, CV_32SC1); UMat accum = _accum.getUMat(); ocl::Device dev = ocl::Device::getDefault(); float irho = (float) (1 / rho); int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points); ocl::Kernel fillAccumKernel; size_t localThreads[2]; size_t globalThreads[2]; size_t local_memory_needed = (numrho + 2)*sizeof(int); if (local_memory_needed > dev.localMemSize()) { accum.setTo(Scalar::all(0)); fillAccumKernel.create("fill_accum_global", ocl::imgproc::hough_lines_oclsrc, format("-D FILL_ACCUM_GLOBAL")); if (fillAccumKernel.empty()) return false; globalThreads[0] = workgroup_size; globalThreads[1] = numangle; fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum), total_points, irho, (float) theta, numrho, numangle); return fillAccumKernel.run(2, globalThreads, NULL, false); } else { fillAccumKernel.create("fill_accum_local", ocl::imgproc::hough_lines_oclsrc, format("-D FILL_ACCUM_LOCAL -D LOCAL_SIZE=%d -D BUFFER_SIZE=%d", workgroup_size, numrho + 2)); if (fillAccumKernel.empty()) return false; localThreads[0] = workgroup_size; localThreads[1] = 1; globalThreads[0] = workgroup_size; globalThreads[1] = numangle+2; fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum), total_points, irho, (float) theta, numrho, numangle); return fillAccumKernel.run(2, globalThreads, localThreads, false); } } static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold, double min_theta, double max_theta) { CV_Assert(_src.type() == CV_8UC1); if (max_theta < 0 || max_theta > CV_PI ) { CV_Error( CV_StsBadArg, "max_theta must fall between 0 and pi" ); } if (min_theta < 0 || min_theta > max_theta ) { CV_Error( CV_StsBadArg, "min_theta must fall between 0 and max_theta" ); } if (!(rho > 0 && theta > 0)) { CV_Error( CV_StsBadArg, "rho and theta must be greater 0" ); } UMat src = _src.getUMat(); int numangle = cvRound((max_theta - min_theta) / theta); int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); UMat pointsList; UMat counters(1, 2, CV_32SC1, Scalar::all(0)); if (!ocl_makePointsList(src, pointsList, counters)) return false; int total_points = counters.getMat(ACCESS_READ).at(0, 0); if (total_points <= 0) { _lines.assign(UMat(0,0,CV_32FC2)); return true; } UMat accum; if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) return false; const int pixPerWI = 8; ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc, format("-D GET_LINES")); if (getLinesKernel.empty()) return false; int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES; UMat lines(linesMax, 1, CV_32FC2); getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (float) rho, (float) theta); size_t globalThreads[2] = { ((size_t)numrho + pixPerWI - 1)/pixPerWI, (size_t)numangle }; if (!getLinesKernel.run(2, globalThreads, NULL, false)) return false; int total_lines = min(counters.getMat(ACCESS_READ).at(0, 1), linesMax); if (total_lines > 0) _lines.assign(lines.rowRange(Range(0, total_lines))); else _lines.assign(UMat(0,0,CV_32FC2)); return true; } static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold, double minLineLength, double maxGap) { CV_Assert(_src.type() == CV_8UC1); if (!(rho > 0 && theta > 0)) { CV_Error( CV_StsBadArg, "rho and theta must be greater 0" ); } UMat src = _src.getUMat(); int numangle = cvRound(CV_PI / theta); int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); UMat pointsList; UMat counters(1, 2, CV_32SC1, Scalar::all(0)); if (!ocl_makePointsList(src, pointsList, counters)) return false; int total_points = counters.getMat(ACCESS_READ).at(0, 0); if (total_points <= 0) { _lines.assign(UMat(0,0,CV_32SC4)); return true; } UMat accum; if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) return false; ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc, format("-D GET_LINES_PROBABOLISTIC")); if (getLinesKernel.empty()) return false; int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES; UMat lines(linesMax, 1, CV_32SC4); getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (int) minLineLength, (int) maxGap, (float) rho, (float) theta); size_t globalThreads[2] = { (size_t)numrho, (size_t)numangle }; if (!getLinesKernel.run(2, globalThreads, NULL, false)) return false; int total_lines = min(counters.getMat(ACCESS_READ).at(0, 1), linesMax); if (total_lines > 0) _lines.assign(lines.rowRange(Range(0, total_lines))); else _lines.assign(UMat(0,0,CV_32SC4)); return true; } #endif /* HAVE_OPENCL */ } void cv::HoughLines( InputArray _image, OutputArray _lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta ) { CV_INSTRUMENT_REGION() CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(), ocl_HoughLines(_image, _lines, rho, theta, threshold, min_theta, max_theta)); Mat image = _image.getMat(); std::vector lines; if( srn == 0 && stn == 0 ) HoughLinesStandard(image, (float)rho, (float)theta, threshold, lines, INT_MAX, min_theta, max_theta ); else HoughLinesSDiv(image, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), lines, INT_MAX, min_theta, max_theta); Mat(lines).copyTo(_lines); } void cv::HoughLinesP(InputArray _image, OutputArray _lines, double rho, double theta, int threshold, double minLineLength, double maxGap ) { CV_INSTRUMENT_REGION() CV_OCL_RUN(_image.isUMat() && _lines.isUMat(), ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap)); Mat image = _image.getMat(); std::vector lines; HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX); Mat(lines).copyTo(_lines); } /* Wrapper function for standard hough transform */ CV_IMPL CvSeq* cvHoughLines2( CvArr* src_image, void* lineStorage, int method, double rho, double theta, int threshold, double param1, double param2, double min_theta, double max_theta ) { cv::Mat image = cv::cvarrToMat(src_image); std::vector l2; std::vector l4; CvSeq* result = 0; CvMat* mat = 0; CvSeq* lines = 0; CvSeq lines_header; CvSeqBlock lines_block; int lineType, elemSize; int linesMax = INT_MAX; int iparam1, iparam2; if( !lineStorage ) CV_Error( CV_StsNullPtr, "NULL destination" ); if( rho <= 0 || theta <= 0 || threshold <= 0 ) CV_Error( CV_StsOutOfRange, "rho, theta and threshold must be positive" ); if( method != CV_HOUGH_PROBABILISTIC ) { lineType = CV_32FC2; elemSize = sizeof(float)*2; } else { lineType = CV_32SC4; elemSize = sizeof(int)*4; } if( CV_IS_STORAGE( lineStorage )) { lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage ); } else if( CV_IS_MAT( lineStorage )) { mat = (CvMat*)lineStorage; if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ) CV_Error( CV_StsBadArg, "The destination matrix should be continuous and have a single row or a single column" ); if( CV_MAT_TYPE( mat->type ) != lineType ) CV_Error( CV_StsBadArg, "The destination matrix data type is inappropriate, see the manual" ); lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr, mat->rows + mat->cols - 1, &lines_header, &lines_block ); linesMax = lines->total; cvClearSeq( lines ); } else CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" ); iparam1 = cvRound(param1); iparam2 = cvRound(param2); switch( method ) { case CV_HOUGH_STANDARD: HoughLinesStandard( image, (float)rho, (float)theta, threshold, l2, linesMax, min_theta, max_theta ); break; case CV_HOUGH_MULTI_SCALE: HoughLinesSDiv( image, (float)rho, (float)theta, threshold, iparam1, iparam2, l2, linesMax, min_theta, max_theta ); break; case CV_HOUGH_PROBABILISTIC: HoughLinesProbabilistic( image, (float)rho, (float)theta, threshold, iparam1, iparam2, l4, linesMax ); break; default: CV_Error( CV_StsBadArg, "Unrecognized method id" ); } int nlines = (int)(l2.size() + l4.size()); if( mat ) { if( mat->cols > mat->rows ) mat->cols = nlines; else mat->rows = nlines; } if( nlines ) { cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ? cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]); if( mat ) { cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr); lx.copyTo(dst); } else { cvSeqPushMulti(lines, lx.ptr(), nlines); } } if( !mat ) result = lines; return result; } /****************************************************************************************\ * Circle Detection * \****************************************************************************************/ static void icvHoughCirclesGradient( CvMat* img, float dp, float min_dist, int min_radius, int max_radius, int canny_threshold, int acc_threshold, CvSeq* circles, int circles_max ) { const int SHIFT = 10, ONE = 1 << SHIFT; cv::Ptr dx, dy; cv::Ptr edges, accum, dist_buf; std::vector sort_buf; cv::Ptr storage; int x, y, i, j, k, center_count, nz_count; float min_radius2 = (float)min_radius*min_radius; float max_radius2 = (float)max_radius*max_radius; int rows, cols, arows, acols; int astep, *adata; float* ddata; CvSeq *nz, *centers; float idp, dr; CvSeqReader reader; edges.reset(cvCreateMat( img->rows, img->cols, CV_8UC1 )); // Use the Canny Edge Detector to detect all the edges in the image. cvCanny( img, edges, MAX(canny_threshold/2,1), canny_threshold, 3 ); dx.reset(cvCreateMat( img->rows, img->cols, CV_16SC1 )); dy.reset(cvCreateMat( img->rows, img->cols, CV_16SC1 )); /*Use the Sobel Derivative to compute the local gradient of all the non-zero pixels in the edge image.*/ cvSobel( img, dx, 1, 0, 3 ); cvSobel( img, dy, 0, 1, 3 ); if( dp < 1.f ) dp = 1.f; idp = 1.f/dp; accum.reset(cvCreateMat( cvCeil(img->rows*idp)+2, cvCeil(img->cols*idp)+2, CV_32SC1 )); cvZero(accum); storage.reset(cvCreateMemStorage()); /* Create sequences for the nonzero pixels in the edge image and the centers of circles which could be detected.*/ nz = cvCreateSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage ); centers = cvCreateSeq( CV_32SC1, sizeof(CvSeq), sizeof(int), storage ); rows = img->rows; cols = img->cols; arows = accum->rows - 2; acols = accum->cols - 2; adata = accum->data.i; astep = accum->step/sizeof(adata[0]); // Accumulate circle evidence for each edge pixel for( y = 0; y < rows; y++ ) { const uchar* edges_row = edges->data.ptr + y*edges->step; const short* dx_row = (const short*)(dx->data.ptr + y*dx->step); const short* dy_row = (const short*)(dy->data.ptr + y*dy->step); for( x = 0; x < cols; x++ ) { float vx, vy; int sx, sy, x0, y0, x1, y1, r; CvPoint pt; vx = dx_row[x]; vy = dy_row[x]; if( !edges_row[x] || (vx == 0 && vy == 0) ) continue; float mag = std::sqrt(vx*vx+vy*vy); assert( mag >= 1 ); sx = cvRound((vx*idp)*ONE/mag); sy = cvRound((vy*idp)*ONE/mag); x0 = cvRound((x*idp)*ONE); y0 = cvRound((y*idp)*ONE); // Step from min_radius to max_radius in both directions of the gradient for(int k1 = 0; k1 < 2; k1++ ) { x1 = x0 + min_radius * sx; y1 = y0 + min_radius * sy; for( r = min_radius; r <= max_radius; x1 += sx, y1 += sy, r++ ) { int x2 = x1 >> SHIFT, y2 = y1 >> SHIFT; if( (unsigned)x2 >= (unsigned)acols || (unsigned)y2 >= (unsigned)arows ) break; adata[y2*astep + x2]++; } sx = -sx; sy = -sy; } pt.x = x; pt.y = y; cvSeqPush( nz, &pt ); } } nz_count = nz->total; if( !nz_count ) return; //Find possible circle centers for( y = 1; y < arows - 1; y++ ) { for( x = 1; x < acols - 1; x++ ) { int base = y*(acols+2) + x; if( adata[base] > acc_threshold && adata[base] > adata[base-1] && adata[base] > adata[base+1] && adata[base] > adata[base-acols-2] && adata[base] > adata[base+acols+2] ) cvSeqPush(centers, &base); } } center_count = centers->total; if( !center_count ) return; sort_buf.resize( MAX(center_count,nz_count) ); cvCvtSeqToArray( centers, &sort_buf[0] ); /*Sort candidate centers in descending order of their accumulator values, so that the centers with the most supporting pixels appear first.*/ std::sort(sort_buf.begin(), sort_buf.begin() + center_count, cv::hough_cmp_gt(adata)); cvClearSeq( centers ); cvSeqPushMulti( centers, &sort_buf[0], center_count ); dist_buf.reset(cvCreateMat( 1, nz_count, CV_32FC1 )); ddata = dist_buf->data.fl; dr = dp; min_dist = MAX( min_dist, dp ); min_dist *= min_dist; // For each found possible center // Estimate radius and check support for( i = 0; i < centers->total; i++ ) { int ofs = *(int*)cvGetSeqElem( centers, i ); y = ofs/(acols+2); x = ofs - (y)*(acols+2); //Calculate circle's center in pixels float cx = (float)((x + 0.5f)*dp), cy = (float)(( y + 0.5f )*dp); float start_dist, dist_sum; float r_best = 0; int max_count = 0; // Check distance with previously detected circles for( j = 0; j < circles->total; j++ ) { float* c = (float*)cvGetSeqElem( circles, j ); if( (c[0] - cx)*(c[0] - cx) + (c[1] - cy)*(c[1] - cy) < min_dist ) break; } if( j < circles->total ) continue; // Estimate best radius cvStartReadSeq( nz, &reader ); for( j = k = 0; j < nz_count; j++ ) { CvPoint pt; float _dx, _dy, _r2; CV_READ_SEQ_ELEM( pt, reader ); _dx = cx - pt.x; _dy = cy - pt.y; _r2 = _dx*_dx + _dy*_dy; if(min_radius2 <= _r2 && _r2 <= max_radius2 ) { ddata[k] = _r2; sort_buf[k] = k; k++; } } int nz_count1 = k, start_idx = nz_count1 - 1; if( nz_count1 == 0 ) continue; dist_buf->cols = nz_count1; cvPow( dist_buf, dist_buf, 0.5 ); // Sort non-zero pixels according to their distance from the center. std::sort(sort_buf.begin(), sort_buf.begin() + nz_count1, cv::hough_cmp_gt((int*)ddata)); dist_sum = start_dist = ddata[sort_buf[nz_count1-1]]; for( j = nz_count1 - 2; j >= 0; j-- ) { float d = ddata[sort_buf[j]]; if( d > max_radius ) break; if( d - start_dist > dr ) { float r_cur = ddata[sort_buf[(j + start_idx)/2]]; if( (start_idx - j)*r_best >= max_count*r_cur || (r_best < FLT_EPSILON && start_idx - j >= max_count) ) { r_best = r_cur; max_count = start_idx - j; } start_dist = d; start_idx = j; dist_sum = 0; } dist_sum += d; } // Check if the circle has enough support if( max_count > acc_threshold ) { float c[3]; c[0] = cx; c[1] = cy; c[2] = (float)r_best; cvSeqPush( circles, c ); if( circles->total > circles_max ) return; } } } CV_IMPL CvSeq* cvHoughCircles( CvArr* src_image, void* circle_storage, int method, double dp, double min_dist, double param1, double param2, int min_radius, int max_radius ) { CvSeq* result = 0; CvMat stub, *img = (CvMat*)src_image; CvMat* mat = 0; CvSeq* circles = 0; CvSeq circles_header; CvSeqBlock circles_block; int circles_max = INT_MAX; int canny_threshold = cvRound(param1); int acc_threshold = cvRound(param2); img = cvGetMat( img, &stub ); if( !CV_IS_MASK_ARR(img)) CV_Error( CV_StsBadArg, "The source image must be 8-bit, single-channel" ); if( !circle_storage ) CV_Error( CV_StsNullPtr, "NULL destination" ); if( dp <= 0 || min_dist <= 0 || canny_threshold <= 0 || acc_threshold <= 0 ) CV_Error( CV_StsOutOfRange, "dp, min_dist, canny_threshold and acc_threshold must be all positive numbers" ); min_radius = MAX( min_radius, 0 ); if( max_radius <= 0 ) max_radius = MAX( img->rows, img->cols ); else if( max_radius <= min_radius ) max_radius = min_radius + 2; if( CV_IS_STORAGE( circle_storage )) { circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, (CvMemStorage*)circle_storage ); } else if( CV_IS_MAT( circle_storage )) { mat = (CvMat*)circle_storage; if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) || CV_MAT_TYPE(mat->type) != CV_32FC3 ) CV_Error( CV_StsBadArg, "The destination matrix should be continuous and have a single row or a single column" ); circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block ); circles_max = circles->total; cvClearSeq( circles ); } else CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" ); switch( method ) { case CV_HOUGH_GRADIENT: icvHoughCirclesGradient( img, (float)dp, (float)min_dist, min_radius, max_radius, canny_threshold, acc_threshold, circles, circles_max ); break; default: CV_Error( CV_StsBadArg, "Unrecognized method id" ); } if( mat ) { if( mat->cols > mat->rows ) mat->cols = circles->total; else mat->rows = circles->total; } else result = circles; return result; } namespace cv { const int STORAGE_SIZE = 1 << 12; static void seqToMat(const CvSeq* seq, OutputArray _arr) { if( seq && seq->total > 0 ) { _arr.create(1, seq->total, seq->flags, -1, true); Mat arr = _arr.getMat(); cvCvtSeqToArray(seq, arr.ptr()); } else _arr.release(); } } void cv::HoughCircles( InputArray _image, OutputArray _circles, int method, double dp, double min_dist, double param1, double param2, int minRadius, int maxRadius ) { CV_INSTRUMENT_REGION() Ptr storage(cvCreateMemStorage(STORAGE_SIZE)); Mat image = _image.getMat(); CvMat c_image = image; CvSeq* seq = cvHoughCircles( &c_image, storage, method, dp, min_dist, param1, param2, minRadius, maxRadius ); seqToMat(seq, _circles); } /* End of file. */