import numpy as np import sys import os import argparse from imagenet_cls_test_alexnet import MeanChannelsFetch, CaffeModel, DnnCaffeModel, ClsAccEvaluation try: import caffe except ImportError: raise ImportError('Can\'t find Caffe Python module. If you\'ve built it from sources without installation, ' 'configure environemnt variable PYTHONPATH to "git/caffe/python" directory') try: import cv2 as cv except ImportError: raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' 'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir") parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this " "archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz") parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: " "https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt") parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: " "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel") parser.add_argument("--log", help="path to logging file") parser.add_argument("--batch_size", help="size of images in batch", default=500, type=int) parser.add_argument("--frame_size", help="size of input image", default=224, type=int) parser.add_argument("--in_blob", help="name for input blob", default='data') parser.add_argument("--out_blob", help="name for output blob", default='prob') args = parser.parse_args() data_fetcher = MeanChannelsFetch(args.frame_size, args.imgs_dir) frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob), DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)] acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size) acc_eval.process(frameworks, data_fetcher)