/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_video.hpp" #if defined __APPLE__ || defined ANDROID #define SMALL_LOCALSIZE #endif // // 2D dense optical flow algorithm from the following paper: // Gunnar Farneback. "Two-Frame Motion Estimation Based on Polynomial Expansion". // Proceedings of the 13th Scandinavian Conference on Image Analysis, Gothenburg, Sweden // namespace cv { static void FarnebackPrepareGaussian(int n, double sigma, float *g, float *xg, float *xxg, double &ig11, double &ig03, double &ig33, double &ig55) { if( sigma < FLT_EPSILON ) sigma = n*0.3; double s = 0.; for (int x = -n; x <= n; x++) { g[x] = (float)std::exp(-x*x/(2*sigma*sigma)); s += g[x]; } s = 1./s; for (int x = -n; x <= n; x++) { g[x] = (float)(g[x]*s); xg[x] = (float)(x*g[x]); xxg[x] = (float)(x*x*g[x]); } Mat_ G(6, 6); G.setTo(0); for (int y = -n; y <= n; y++) { for (int x = -n; x <= n; x++) { G(0,0) += g[y]*g[x]; G(1,1) += g[y]*g[x]*x*x; G(3,3) += g[y]*g[x]*x*x*x*x; G(5,5) += g[y]*g[x]*x*x*y*y; } } //G[0][0] = 1.; G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1); G(4,4) = G(3,3); G(3,4) = G(4,3) = G(5,5); // invG: // [ x e e ] // [ y ] // [ y ] // [ e z ] // [ e z ] // [ u ] Mat_ invG = G.inv(DECOMP_CHOLESKY); ig11 = invG(1,1); ig03 = invG(0,3); ig33 = invG(3,3); ig55 = invG(5,5); } static void FarnebackPolyExp( const Mat& src, Mat& dst, int n, double sigma ) { int k, x, y; CV_Assert( src.type() == CV_32FC1 ); int width = src.cols; int height = src.rows; AutoBuffer kbuf(n*6 + 3), _row((width + n*2)*3); float* g = kbuf + n; float* xg = g + n*2 + 1; float* xxg = xg + n*2 + 1; float *row = (float*)_row + n*3; double ig11, ig03, ig33, ig55; FarnebackPrepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55); dst.create( height, width, CV_32FC(5)); for( y = 0; y < height; y++ ) { float g0 = g[0], g1, g2; const float *srow0 = src.ptr(y), *srow1 = 0; float *drow = dst.ptr(y); // vertical part of convolution for( x = 0; x < width; x++ ) { row[x*3] = srow0[x]*g0; row[x*3+1] = row[x*3+2] = 0.f; } for( k = 1; k <= n; k++ ) { g0 = g[k]; g1 = xg[k]; g2 = xxg[k]; srow0 = src.ptr(std::max(y-k,0)); srow1 = src.ptr(std::min(y+k,height-1)); for( x = 0; x < width; x++ ) { float p = srow0[x] + srow1[x]; float t0 = row[x*3] + g0*p; float t1 = row[x*3+1] + g1*(srow1[x] - srow0[x]); float t2 = row[x*3+2] + g2*p; row[x*3] = t0; row[x*3+1] = t1; row[x*3+2] = t2; } } // horizontal part of convolution for( x = 0; x < n*3; x++ ) { row[-1-x] = row[2-x]; row[width*3+x] = row[width*3+x-3]; } for( x = 0; x < width; x++ ) { g0 = g[0]; // r1 ~ 1, r2 ~ x, r3 ~ y, r4 ~ x^2, r5 ~ y^2, r6 ~ xy double b1 = row[x*3]*g0, b2 = 0, b3 = row[x*3+1]*g0, b4 = 0, b5 = row[x*3+2]*g0, b6 = 0; for( k = 1; k <= n; k++ ) { double tg = row[(x+k)*3] + row[(x-k)*3]; g0 = g[k]; b1 += tg*g0; b4 += tg*xxg[k]; b2 += (row[(x+k)*3] - row[(x-k)*3])*xg[k]; b3 += (row[(x+k)*3+1] + row[(x-k)*3+1])*g0; b6 += (row[(x+k)*3+1] - row[(x-k)*3+1])*xg[k]; b5 += (row[(x+k)*3+2] + row[(x-k)*3+2])*g0; } // do not store r1 drow[x*5+1] = (float)(b2*ig11); drow[x*5] = (float)(b3*ig11); drow[x*5+3] = (float)(b1*ig03 + b4*ig33); drow[x*5+2] = (float)(b1*ig03 + b5*ig33); drow[x*5+4] = (float)(b6*ig55); } } row -= n*3; } /*static void FarnebackPolyExpPyr( const Mat& src0, Vector& pyr, int maxlevel, int n, double sigma ) { Vector imgpyr; buildPyramid( src0, imgpyr, maxlevel ); for( int i = 0; i <= maxlevel; i++ ) FarnebackPolyExp( imgpyr[i], pyr[i], n, sigma ); }*/ static void FarnebackUpdateMatrices( const Mat& _R0, const Mat& _R1, const Mat& _flow, Mat& matM, int _y0, int _y1 ) { const int BORDER = 5; static const float border[BORDER] = {0.14f, 0.14f, 0.4472f, 0.4472f, 0.4472f}; int x, y, width = _flow.cols, height = _flow.rows; const float* R1 = _R1.ptr(); size_t step1 = _R1.step/sizeof(R1[0]); matM.create(height, width, CV_32FC(5)); for( y = _y0; y < _y1; y++ ) { const float* flow = _flow.ptr(y); const float* R0 = _R0.ptr(y); float* M = matM.ptr(y); for( x = 0; x < width; x++ ) { float dx = flow[x*2], dy = flow[x*2+1]; float fx = x + dx, fy = y + dy; #if 1 int x1 = cvFloor(fx), y1 = cvFloor(fy); const float* ptr = R1 + y1*step1 + x1*5; float r2, r3, r4, r5, r6; fx -= x1; fy -= y1; if( (unsigned)x1 < (unsigned)(width-1) && (unsigned)y1 < (unsigned)(height-1) ) { float a00 = (1.f-fx)*(1.f-fy), a01 = fx*(1.f-fy), a10 = (1.f-fx)*fy, a11 = fx*fy; r2 = a00*ptr[0] + a01*ptr[5] + a10*ptr[step1] + a11*ptr[step1+5]; r3 = a00*ptr[1] + a01*ptr[6] + a10*ptr[step1+1] + a11*ptr[step1+6]; r4 = a00*ptr[2] + a01*ptr[7] + a10*ptr[step1+2] + a11*ptr[step1+7]; r5 = a00*ptr[3] + a01*ptr[8] + a10*ptr[step1+3] + a11*ptr[step1+8]; r6 = a00*ptr[4] + a01*ptr[9] + a10*ptr[step1+4] + a11*ptr[step1+9]; r4 = (R0[x*5+2] + r4)*0.5f; r5 = (R0[x*5+3] + r5)*0.5f; r6 = (R0[x*5+4] + r6)*0.25f; } #else int x1 = cvRound(fx), y1 = cvRound(fy); const float* ptr = R1 + y1*step1 + x1*5; float r2, r3, r4, r5, r6; if( (unsigned)x1 < (unsigned)width && (unsigned)y1 < (unsigned)height ) { r2 = ptr[0]; r3 = ptr[1]; r4 = (R0[x*5+2] + ptr[2])*0.5f; r5 = (R0[x*5+3] + ptr[3])*0.5f; r6 = (R0[x*5+4] + ptr[4])*0.25f; } #endif else { r2 = r3 = 0.f; r4 = R0[x*5+2]; r5 = R0[x*5+3]; r6 = R0[x*5+4]*0.5f; } r2 = (R0[x*5] - r2)*0.5f; r3 = (R0[x*5+1] - r3)*0.5f; r2 += r4*dy + r6*dx; r3 += r6*dy + r5*dx; if( (unsigned)(x - BORDER) >= (unsigned)(width - BORDER*2) || (unsigned)(y - BORDER) >= (unsigned)(height - BORDER*2)) { float scale = (x < BORDER ? border[x] : 1.f)* (x >= width - BORDER ? border[width - x - 1] : 1.f)* (y < BORDER ? border[y] : 1.f)* (y >= height - BORDER ? border[height - y - 1] : 1.f); r2 *= scale; r3 *= scale; r4 *= scale; r5 *= scale; r6 *= scale; } M[x*5] = r4*r4 + r6*r6; // G(1,1) M[x*5+1] = (r4 + r5)*r6; // G(1,2)=G(2,1) M[x*5+2] = r5*r5 + r6*r6; // G(2,2) M[x*5+3] = r4*r2 + r6*r3; // h(1) M[x*5+4] = r6*r2 + r5*r3; // h(2) } } } static void FarnebackUpdateFlow_Blur( const Mat& _R0, const Mat& _R1, Mat& _flow, Mat& matM, int block_size, bool update_matrices ) { int x, y, width = _flow.cols, height = _flow.rows; int m = block_size/2; int y0 = 0, y1; int min_update_stripe = std::max((1 << 10)/width, block_size); double scale = 1./(block_size*block_size); AutoBuffer _vsum((width+m*2+2)*5); double* vsum = _vsum + (m+1)*5; // init vsum const float* srow0 = matM.ptr(); for( x = 0; x < width*5; x++ ) vsum[x] = srow0[x]*(m+2); for( y = 1; y < m; y++ ) { srow0 = matM.ptr(std::min(y,height-1)); for( x = 0; x < width*5; x++ ) vsum[x] += srow0[x]; } // compute blur(G)*flow=blur(h) for( y = 0; y < height; y++ ) { double g11, g12, g22, h1, h2; float* flow = _flow.ptr(y); srow0 = matM.ptr(std::max(y-m-1,0)); const float* srow1 = matM.ptr(std::min(y+m,height-1)); // vertical blur for( x = 0; x < width*5; x++ ) vsum[x] += srow1[x] - srow0[x]; // update borders for( x = 0; x < (m+1)*5; x++ ) { vsum[-1-x] = vsum[4-x]; vsum[width*5+x] = vsum[width*5+x-5]; } // init g** and h* g11 = vsum[0]*(m+2); g12 = vsum[1]*(m+2); g22 = vsum[2]*(m+2); h1 = vsum[3]*(m+2); h2 = vsum[4]*(m+2); for( x = 1; x < m; x++ ) { g11 += vsum[x*5]; g12 += vsum[x*5+1]; g22 += vsum[x*5+2]; h1 += vsum[x*5+3]; h2 += vsum[x*5+4]; } // horizontal blur for( x = 0; x < width; x++ ) { g11 += vsum[(x+m)*5] - vsum[(x-m)*5 - 5]; g12 += vsum[(x+m)*5 + 1] - vsum[(x-m)*5 - 4]; g22 += vsum[(x+m)*5 + 2] - vsum[(x-m)*5 - 3]; h1 += vsum[(x+m)*5 + 3] - vsum[(x-m)*5 - 2]; h2 += vsum[(x+m)*5 + 4] - vsum[(x-m)*5 - 1]; double g11_ = g11*scale; double g12_ = g12*scale; double g22_ = g22*scale; double h1_ = h1*scale; double h2_ = h2*scale; double idet = 1./(g11_*g22_ - g12_*g12_+1e-3); flow[x*2] = (float)((g11_*h2_-g12_*h1_)*idet); flow[x*2+1] = (float)((g22_*h1_-g12_*h2_)*idet); } y1 = y == height - 1 ? height : y - block_size; if( update_matrices && (y1 == height || y1 >= y0 + min_update_stripe) ) { FarnebackUpdateMatrices( _R0, _R1, _flow, matM, y0, y1 ); y0 = y1; } } } static void FarnebackUpdateFlow_GaussianBlur( const Mat& _R0, const Mat& _R1, Mat& _flow, Mat& matM, int block_size, bool update_matrices ) { int x, y, i, width = _flow.cols, height = _flow.rows; int m = block_size/2; int y0 = 0, y1; int min_update_stripe = std::max((1 << 10)/width, block_size); double sigma = m*0.3, s = 1; AutoBuffer _vsum((width+m*2+2)*5 + 16), _hsum(width*5 + 16); AutoBuffer _kernel((m+1)*5 + 16); AutoBuffer _srow(m*2+1); float *vsum = alignPtr((float*)_vsum + (m+1)*5, 16), *hsum = alignPtr((float*)_hsum, 16); float* kernel = (float*)_kernel; const float** srow = (const float**)&_srow[0]; kernel[0] = (float)s; for( i = 1; i <= m; i++ ) { float t = (float)std::exp(-i*i/(2*sigma*sigma) ); kernel[i] = t; s += t*2; } s = 1./s; for( i = 0; i <= m; i++ ) kernel[i] = (float)(kernel[i]*s); #if CV_SSE2 float* simd_kernel = alignPtr(kernel + m+1, 16); volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE); if( useSIMD ) { for( i = 0; i <= m; i++ ) _mm_store_ps(simd_kernel + i*4, _mm_set1_ps(kernel[i])); } #endif // compute blur(G)*flow=blur(h) for( y = 0; y < height; y++ ) { double g11, g12, g22, h1, h2; float* flow = _flow.ptr(y); // vertical blur for( i = 0; i <= m; i++ ) { srow[m-i] = matM.ptr(std::max(y-i,0)); srow[m+i] = matM.ptr(std::min(y+i,height-1)); } x = 0; #if CV_SSE2 if( useSIMD ) { for( ; x <= width*5 - 16; x += 16 ) { const float *sptr0 = srow[m], *sptr1; __m128 g4 = _mm_load_ps(simd_kernel); __m128 s0, s1, s2, s3; s0 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x), g4); s1 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 4), g4); s2 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 8), g4); s3 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x + 12), g4); for( i = 1; i <= m; i++ ) { __m128 x0, x1; sptr0 = srow[m+i], sptr1 = srow[m-i]; g4 = _mm_load_ps(simd_kernel + i*4); x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x), _mm_loadu_ps(sptr1 + x)); x1 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 4), _mm_loadu_ps(sptr1 + x + 4)); s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4)); s1 = _mm_add_ps(s1, _mm_mul_ps(x1, g4)); x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 8), _mm_loadu_ps(sptr1 + x + 8)); x1 = _mm_add_ps(_mm_loadu_ps(sptr0 + x + 12), _mm_loadu_ps(sptr1 + x + 12)); s2 = _mm_add_ps(s2, _mm_mul_ps(x0, g4)); s3 = _mm_add_ps(s3, _mm_mul_ps(x1, g4)); } _mm_store_ps(vsum + x, s0); _mm_store_ps(vsum + x + 4, s1); _mm_store_ps(vsum + x + 8, s2); _mm_store_ps(vsum + x + 12, s3); } for( ; x <= width*5 - 4; x += 4 ) { const float *sptr0 = srow[m], *sptr1; __m128 g4 = _mm_load_ps(simd_kernel); __m128 s0 = _mm_mul_ps(_mm_loadu_ps(sptr0 + x), g4); for( i = 1; i <= m; i++ ) { sptr0 = srow[m+i], sptr1 = srow[m-i]; g4 = _mm_load_ps(simd_kernel + i*4); __m128 x0 = _mm_add_ps(_mm_loadu_ps(sptr0 + x), _mm_loadu_ps(sptr1 + x)); s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4)); } _mm_store_ps(vsum + x, s0); } } #endif for( ; x < width*5; x++ ) { float s0 = srow[m][x]*kernel[0]; for( i = 1; i <= m; i++ ) s0 += (srow[m+i][x] + srow[m-i][x])*kernel[i]; vsum[x] = s0; } // update borders for( x = 0; x < m*5; x++ ) { vsum[-1-x] = vsum[4-x]; vsum[width*5+x] = vsum[width*5+x-5]; } // horizontal blur x = 0; #if CV_SSE2 if( useSIMD ) { for( ; x <= width*5 - 8; x += 8 ) { __m128 g4 = _mm_load_ps(simd_kernel); __m128 s0 = _mm_mul_ps(_mm_loadu_ps(vsum + x), g4); __m128 s1 = _mm_mul_ps(_mm_loadu_ps(vsum + x + 4), g4); for( i = 1; i <= m; i++ ) { g4 = _mm_load_ps(simd_kernel + i*4); __m128 x0 = _mm_add_ps(_mm_loadu_ps(vsum + x - i*5), _mm_loadu_ps(vsum + x + i*5)); __m128 x1 = _mm_add_ps(_mm_loadu_ps(vsum + x - i*5 + 4), _mm_loadu_ps(vsum + x + i*5 + 4)); s0 = _mm_add_ps(s0, _mm_mul_ps(x0, g4)); s1 = _mm_add_ps(s1, _mm_mul_ps(x1, g4)); } _mm_store_ps(hsum + x, s0); _mm_store_ps(hsum + x + 4, s1); } } #endif for( ; x < width*5; x++ ) { float sum = vsum[x]*kernel[0]; for( i = 1; i <= m; i++ ) sum += kernel[i]*(vsum[x - i*5] + vsum[x + i*5]); hsum[x] = sum; } for( x = 0; x < width; x++ ) { g11 = hsum[x*5]; g12 = hsum[x*5+1]; g22 = hsum[x*5+2]; h1 = hsum[x*5+3]; h2 = hsum[x*5+4]; double idet = 1./(g11*g22 - g12*g12 + 1e-3); flow[x*2] = (float)((g11*h2-g12*h1)*idet); flow[x*2+1] = (float)((g22*h1-g12*h2)*idet); } y1 = y == height - 1 ? height : y - block_size; if( update_matrices && (y1 == height || y1 >= y0 + min_update_stripe) ) { FarnebackUpdateMatrices( _R0, _R1, _flow, matM, y0, y1 ); y0 = y1; } } } } namespace cv { namespace { class FarnebackOpticalFlowImpl : public FarnebackOpticalFlow { public: FarnebackOpticalFlowImpl(int numLevels=5, double pyrScale=0.5, bool fastPyramids=false, int winSize=13, int numIters=10, int polyN=5, double polySigma=1.1, int flags=0) : numLevels_(numLevels), pyrScale_(pyrScale), fastPyramids_(fastPyramids), winSize_(winSize), numIters_(numIters), polyN_(polyN), polySigma_(polySigma), flags_(flags) { } virtual int getNumLevels() const { return numLevels_; } virtual void setNumLevels(int numLevels) { numLevels_ = numLevels; } virtual double getPyrScale() const { return pyrScale_; } virtual void setPyrScale(double pyrScale) { pyrScale_ = pyrScale; } virtual bool getFastPyramids() const { return fastPyramids_; } virtual void setFastPyramids(bool fastPyramids) { fastPyramids_ = fastPyramids; } virtual int getWinSize() const { return winSize_; } virtual void setWinSize(int winSize) { winSize_ = winSize; } virtual int getNumIters() const { return numIters_; } virtual void setNumIters(int numIters) { numIters_ = numIters; } virtual int getPolyN() const { return polyN_; } virtual void setPolyN(int polyN) { polyN_ = polyN; } virtual double getPolySigma() const { return polySigma_; } virtual void setPolySigma(double polySigma) { polySigma_ = polySigma; } virtual int getFlags() const { return flags_; } virtual void setFlags(int flags) { flags_ = flags; } virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow); private: int numLevels_; double pyrScale_; bool fastPyramids_; int winSize_; int numIters_; int polyN_; double polySigma_; int flags_; #ifdef HAVE_OPENCL bool operator ()(const UMat &frame0, const UMat &frame1, UMat &flowx, UMat &flowy) { CV_Assert(frame0.channels() == 1 && frame1.channels() == 1); CV_Assert(frame0.size() == frame1.size()); CV_Assert(polyN_ == 5 || polyN_ == 7); CV_Assert(!fastPyramids_ || std::abs(pyrScale_ - 0.5) < 1e-6); const int min_size = 32; Size size = frame0.size(); UMat prevFlowX, prevFlowY, curFlowX, curFlowY; flowx.create(size, CV_32F); flowy.create(size, CV_32F); UMat flowx0 = flowx; UMat flowy0 = flowy; // Crop unnecessary levels double scale = 1; int numLevelsCropped = 0; for (; numLevelsCropped < numLevels_; numLevelsCropped++) { scale *= pyrScale_; if (size.width*scale < min_size || size.height*scale < min_size) break; } frame0.convertTo(frames_[0], CV_32F); frame1.convertTo(frames_[1], CV_32F); if (fastPyramids_) { // Build Gaussian pyramids using pyrDown() pyramid0_.resize(numLevelsCropped + 1); pyramid1_.resize(numLevelsCropped + 1); pyramid0_[0] = frames_[0]; pyramid1_[0] = frames_[1]; for (int i = 1; i <= numLevelsCropped; ++i) { pyrDown(pyramid0_[i - 1], pyramid0_[i]); pyrDown(pyramid1_[i - 1], pyramid1_[i]); } } setPolynomialExpansionConsts(polyN_, polySigma_); for (int k = numLevelsCropped; k >= 0; k--) { scale = 1; for (int i = 0; i < k; i++) scale *= pyrScale_; double sigma = (1./scale - 1) * 0.5; int smoothSize = cvRound(sigma*5) | 1; smoothSize = std::max(smoothSize, 3); int width = cvRound(size.width*scale); int height = cvRound(size.height*scale); if (fastPyramids_) { width = pyramid0_[k].cols; height = pyramid0_[k].rows; } if (k > 0) { curFlowX.create(height, width, CV_32F); curFlowY.create(height, width, CV_32F); } else { curFlowX = flowx0; curFlowY = flowy0; } if (prevFlowX.empty()) { if (flags_ & cv::OPTFLOW_USE_INITIAL_FLOW) { resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR); resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR); multiply(scale, curFlowX, curFlowX); multiply(scale, curFlowY, curFlowY); } else { curFlowX.setTo(0); curFlowY.setTo(0); } } else { resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR); resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR); multiply(1./pyrScale_, curFlowX, curFlowX); multiply(1./pyrScale_, curFlowY, curFlowY); } UMat M = allocMatFromBuf(5*height, width, CV_32F, M_); UMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_); UMat R[2] = { allocMatFromBuf(5*height, width, CV_32F, R_[0]), allocMatFromBuf(5*height, width, CV_32F, R_[1]) }; if (fastPyramids_) { if (!polynomialExpansionOcl(pyramid0_[k], R[0])) return false; if (!polynomialExpansionOcl(pyramid1_[k], R[1])) return false; } else { UMat blurredFrame[2] = { allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]), allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1]) }; UMat pyrLevel[2] = { allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]), allocMatFromBuf(height, width, CV_32F, pyrLevel_[1]) }; setGaussianBlurKernel(smoothSize, sigma); for (int i = 0; i < 2; i++) { if (!gaussianBlurOcl(frames_[i], smoothSize/2, blurredFrame[i])) return false; resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR); if (!polynomialExpansionOcl(pyrLevel[i], R[i])) return false; } } if (!updateMatricesOcl(curFlowX, curFlowY, R[0], R[1], M)) return false; if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN) setGaussianBlurKernel(winSize_, winSize_/2*0.3f); for (int i = 0; i < numIters_; i++) { if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN) { if (!updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1)) return false; } else { if (!updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1)) return false; } } prevFlowX = curFlowX; prevFlowY = curFlowY; } flowx = curFlowX; flowy = curFlowY; return true; } virtual void collectGarbage(){ releaseMemory(); } void releaseMemory() { frames_[0].release(); frames_[1].release(); pyrLevel_[0].release(); pyrLevel_[1].release(); M_.release(); bufM_.release(); R_[0].release(); R_[1].release(); blurredFrame_[0].release(); blurredFrame_[1].release(); pyramid0_.clear(); pyramid1_.clear(); } private: UMat m_g; UMat m_xg; UMat m_xxg; double m_igd[4]; float m_ig[4]; void setPolynomialExpansionConsts(int n, double sigma) { std::vector buf(n*6 + 3); float* g = &buf[0] + n; float* xg = g + n*2 + 1; float* xxg = xg + n*2 + 1; FarnebackPrepareGaussian(n, sigma, g, xg, xxg, m_igd[0], m_igd[1], m_igd[2], m_igd[3]); cv::Mat t_g(1, n + 1, CV_32FC1, g); t_g.copyTo(m_g); cv::Mat t_xg(1, n + 1, CV_32FC1, xg); t_xg.copyTo(m_xg); cv::Mat t_xxg(1, n + 1, CV_32FC1, xxg); t_xxg.copyTo(m_xxg); m_ig[0] = static_cast(m_igd[0]); m_ig[1] = static_cast(m_igd[1]); m_ig[2] = static_cast(m_igd[2]); m_ig[3] = static_cast(m_igd[3]); } private: UMat m_gKer; inline void setGaussianBlurKernel(int smoothSize, double sigma) { Mat g = getGaussianKernel(smoothSize, sigma, CV_32F); Mat gKer(1, smoothSize/2 + 1, CV_32FC1, g.ptr(smoothSize/2)); gKer.copyTo(m_gKer); } private: UMat frames_[2]; UMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2]; std::vector pyramid0_, pyramid1_; static UMat allocMatFromBuf(int rows, int cols, int type, UMat &mat) { if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) return mat(Rect(0, 0, cols, rows)); return mat = UMat(rows, cols, type); } private: #define DIVUP(total, grain) (((total) + (grain) - 1) / (grain)) bool gaussianBlurOcl(const UMat &src, int ksizeHalf, UMat &dst) { #ifdef SMALL_LOCALSIZE size_t localsize[2] = { 128, 1}; #else size_t localsize[2] = { 256, 1}; #endif size_t globalsize[2] = { (size_t)src.cols, (size_t)src.rows}; int smem_size = (int)((localsize[0] + 2*ksizeHalf) * sizeof(float)); ocl::Kernel kernel; if (!kernel.create("gaussianBlur", cv::ocl::video::optical_flow_farneback_oclsrc, "")) return false; CV_Assert(dst.size() == src.size()); int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)(src.step / src.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)(dst.step / dst.elemSize())); idxArg = kernel.set(idxArg, dst.rows); idxArg = kernel.set(idxArg, dst.cols); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_gKer)); idxArg = kernel.set(idxArg, (int)ksizeHalf); kernel.set(idxArg, (void *)NULL, smem_size); return kernel.run(2, globalsize, localsize, false); } bool gaussianBlur5Ocl(const UMat &src, int ksizeHalf, UMat &dst) { int height = src.rows / 5; #ifdef SMALL_LOCALSIZE size_t localsize[2] = { 128, 1}; #else size_t localsize[2] = { 256, 1}; #endif size_t globalsize[2] = { (size_t)src.cols, (size_t)height}; int smem_size = (int)((localsize[0] + 2*ksizeHalf) * 5 * sizeof(float)); ocl::Kernel kernel; if (!kernel.create("gaussianBlur5", cv::ocl::video::optical_flow_farneback_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)(src.step / src.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)(dst.step / dst.elemSize())); idxArg = kernel.set(idxArg, height); idxArg = kernel.set(idxArg, src.cols); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_gKer)); idxArg = kernel.set(idxArg, (int)ksizeHalf); kernel.set(idxArg, (void *)NULL, smem_size); return kernel.run(2, globalsize, localsize, false); } bool polynomialExpansionOcl(const UMat &src, UMat &dst) { #ifdef SMALL_LOCALSIZE size_t localsize[2] = { 128, 1}; #else size_t localsize[2] = { 256, 1}; #endif size_t globalsize[2] = { DIVUP((size_t)src.cols, localsize[0] - 2*polyN_) * localsize[0], (size_t)src.rows}; #if 0 const cv::ocl::Device &device = cv::ocl::Device::getDefault(); bool useDouble = (0 != device.doubleFPConfig()); cv::String build_options = cv::format("-D polyN=%d -D USE_DOUBLE=%d", polyN_, useDouble ? 1 : 0); #else cv::String build_options = cv::format("-D polyN=%d", polyN_); #endif ocl::Kernel kernel; if (!kernel.create("polynomialExpansion", cv::ocl::video::optical_flow_farneback_oclsrc, build_options)) return false; int smem_size = (int)(3 * localsize[0] * sizeof(float)); int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)(src.step / src.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)(dst.step / dst.elemSize())); idxArg = kernel.set(idxArg, src.rows); idxArg = kernel.set(idxArg, src.cols); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_g)); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_xg)); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_xxg)); idxArg = kernel.set(idxArg, (void *)NULL, smem_size); kernel.set(idxArg, (void *)m_ig, 4 * sizeof(float)); return kernel.run(2, globalsize, localsize, false); } bool boxFilter5Ocl(const UMat &src, int ksizeHalf, UMat &dst) { int height = src.rows / 5; #ifdef SMALL_LOCALSIZE size_t localsize[2] = { 128, 1}; #else size_t localsize[2] = { 256, 1}; #endif size_t globalsize[2] = { (size_t)src.cols, (size_t)height}; ocl::Kernel kernel; if (!kernel.create("boxFilter5", cv::ocl::video::optical_flow_farneback_oclsrc, "")) return false; int smem_size = (int)((localsize[0] + 2*ksizeHalf) * 5 * sizeof(float)); int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)(src.step / src.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)(dst.step / dst.elemSize())); idxArg = kernel.set(idxArg, height); idxArg = kernel.set(idxArg, src.cols); idxArg = kernel.set(idxArg, (int)ksizeHalf); kernel.set(idxArg, (void *)NULL, smem_size); return kernel.run(2, globalsize, localsize, false); } bool updateFlowOcl(const UMat &M, UMat &flowx, UMat &flowy) { #ifdef SMALL_LOCALSIZE size_t localsize[2] = { 32, 4}; #else size_t localsize[2] = { 32, 8}; #endif size_t globalsize[2] = { (size_t)flowx.cols, (size_t)flowx.rows}; ocl::Kernel kernel; if (!kernel.create("updateFlow", cv::ocl::video::optical_flow_farneback_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(M)); idxArg = kernel.set(idxArg, (int)(M.step / M.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(flowx)); idxArg = kernel.set(idxArg, (int)(flowx.step / flowx.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(flowy)); idxArg = kernel.set(idxArg, (int)(flowy.step / flowy.elemSize())); idxArg = kernel.set(idxArg, (int)flowy.rows); kernel.set(idxArg, (int)flowy.cols); return kernel.run(2, globalsize, localsize, false); } bool updateMatricesOcl(const UMat &flowx, const UMat &flowy, const UMat &R0, const UMat &R1, UMat &M) { #ifdef SMALL_LOCALSIZE size_t localsize[2] = { 32, 4}; #else size_t localsize[2] = { 32, 8}; #endif size_t globalsize[2] = { (size_t)flowx.cols, (size_t)flowx.rows}; ocl::Kernel kernel; if (!kernel.create("updateMatrices", cv::ocl::video::optical_flow_farneback_oclsrc, "")) return false; int idxArg = 0; idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(flowx)); idxArg = kernel.set(idxArg, (int)(flowx.step / flowx.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(flowy)); idxArg = kernel.set(idxArg, (int)(flowy.step / flowy.elemSize())); idxArg = kernel.set(idxArg, (int)flowx.rows); idxArg = kernel.set(idxArg, (int)flowx.cols); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(R0)); idxArg = kernel.set(idxArg, (int)(R0.step / R0.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(R1)); idxArg = kernel.set(idxArg, (int)(R1.step / R1.elemSize())); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(M)); kernel.set(idxArg, (int)(M.step / M.elemSize())); return kernel.run(2, globalsize, localsize, false); } bool updateFlow_boxFilter( const UMat& R0, const UMat& R1, UMat& flowx, UMat &flowy, UMat& M, UMat &bufM, int blockSize, bool updateMatrices) { if (!boxFilter5Ocl(M, blockSize/2, bufM)) return false; swap(M, bufM); if (!updateFlowOcl(M, flowx, flowy)) return false; if (updateMatrices) if (!updateMatricesOcl(flowx, flowy, R0, R1, M)) return false; return true; } bool updateFlow_gaussianBlur( const UMat& R0, const UMat& R1, UMat& flowx, UMat& flowy, UMat& M, UMat &bufM, int blockSize, bool updateMatrices) { if (!gaussianBlur5Ocl(M, blockSize/2, bufM)) return false; swap(M, bufM); if (!updateFlowOcl(M, flowx, flowy)) return false; if (updateMatrices) if (!updateMatricesOcl(flowx, flowy, R0, R1, M)) return false; return true; } bool calc_ocl( InputArray _prev0, InputArray _next0, InputOutputArray _flow0) { if ((5 != polyN_) && (7 != polyN_)) return false; if (_next0.size() != _prev0.size()) return false; int typePrev = _prev0.type(); int typeNext = _next0.type(); if ((1 != CV_MAT_CN(typePrev)) || (1 != CV_MAT_CN(typeNext))) return false; std::vector flowar; if (!_flow0.empty()) split(_flow0, flowar); else { flowar.push_back(UMat()); flowar.push_back(UMat()); } if(!this->operator()(_prev0.getUMat(), _next0.getUMat(), flowar[0], flowar[1])){ return false; } merge(flowar, _flow0); return true; } #else // HAVE_OPENCL virtual void collectGarbage(){} #endif }; void FarnebackOpticalFlowImpl::calc(InputArray _prev0, InputArray _next0, InputOutputArray _flow0) { CV_OCL_RUN(_flow0.isUMat() && ocl::Image2D::isFormatSupported(CV_32F, 1, false), calc_ocl(_prev0,_next0,_flow0)) Mat prev0 = _prev0.getMat(), next0 = _next0.getMat(); const int min_size = 32; const Mat* img[2] = { &prev0, &next0 }; int i, k; double scale; Mat prevFlow, flow, fimg; int levels = numLevels_; CV_Assert( prev0.size() == next0.size() && prev0.channels() == next0.channels() && prev0.channels() == 1 && pyrScale_ < 1 ); _flow0.create( prev0.size(), CV_32FC2 ); Mat flow0 = _flow0.getMat(); for( k = 0, scale = 1; k < levels; k++ ) { scale *= pyrScale_; if( prev0.cols*scale < min_size || prev0.rows*scale < min_size ) break; } levels = k; for( k = levels; k >= 0; k-- ) { for( i = 0, scale = 1; i < k; i++ ) scale *= pyrScale_; double sigma = (1./scale-1)*0.5; int smooth_sz = cvRound(sigma*5)|1; smooth_sz = std::max(smooth_sz, 3); int width = cvRound(prev0.cols*scale); int height = cvRound(prev0.rows*scale); if( k > 0 ) flow.create( height, width, CV_32FC2 ); else flow = flow0; if( prevFlow.empty() ) { if( flags_ & OPTFLOW_USE_INITIAL_FLOW ) { resize( flow0, flow, Size(width, height), 0, 0, INTER_AREA ); flow *= scale; } else flow = Mat::zeros( height, width, CV_32FC2 ); } else { resize( prevFlow, flow, Size(width, height), 0, 0, INTER_LINEAR ); flow *= 1./pyrScale_; } Mat R[2], I, M; for( i = 0; i < 2; i++ ) { img[i]->convertTo(fimg, CV_32F); GaussianBlur(fimg, fimg, Size(smooth_sz, smooth_sz), sigma, sigma); resize( fimg, I, Size(width, height), INTER_LINEAR ); FarnebackPolyExp( I, R[i], polyN_, polySigma_ ); } FarnebackUpdateMatrices( R[0], R[1], flow, M, 0, flow.rows ); for( i = 0; i < numIters_; i++ ) { if( flags_ & OPTFLOW_FARNEBACK_GAUSSIAN ) FarnebackUpdateFlow_GaussianBlur( R[0], R[1], flow, M, winSize_, i < numIters_ - 1 ); else FarnebackUpdateFlow_Blur( R[0], R[1], flow, M, winSize_, i < numIters_ - 1 ); } prevFlow = flow; } } } // namespace } // namespace cv void cv::calcOpticalFlowFarneback( InputArray _prev0, InputArray _next0, InputOutputArray _flow0, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags ) { Ptr optflow; optflow = makePtr(levels,pyr_scale,false,winsize,iterations,poly_n,poly_sigma,flags); optflow->calc(_prev0,_next0,_flow0); } cv::Ptr cv::FarnebackOpticalFlow::create(int numLevels, double pyrScale, bool fastPyramids, int winSize, int numIters, int polyN, double polySigma, int flags) { return makePtr(numLevels, pyrScale, fastPyramids, winSize, numIters, polyN, polySigma, flags); }