/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "internal_shared.hpp" #include "opencv2/gpu/device/transform.hpp" #include "opencv2/gpu/device/functional.hpp" namespace cv { namespace gpu { namespace device { #define SOLVE_PNP_RANSAC_MAX_NUM_ITERS 200 namespace transform_points { __constant__ float3 crot0; __constant__ float3 crot1; __constant__ float3 crot2; __constant__ float3 ctransl; struct TransformOp : unary_function { __device__ __forceinline__ float3 operator()(const float3& p) const { return make_float3( crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x, crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y, crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z); } }; void call(const DevMem2D_ src, const float* rot, const float* transl, DevMem2D_ dst, cudaStream_t stream) { cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3)); cv::gpu::device::transform(src, dst, TransformOp(), WithOutMask(), stream); } } // namespace transform_points namespace project_points { __constant__ float3 crot0; __constant__ float3 crot1; __constant__ float3 crot2; __constant__ float3 ctransl; __constant__ float3 cproj0; __constant__ float3 cproj1; struct ProjectOp : unary_function { __device__ __forceinline__ float2 operator()(const float3& p) const { // Rotate and translate in 3D float3 t = make_float3( crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x, crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y, crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z); // Project on 2D plane return make_float2( (cproj0.x * t.x + cproj0.y * t.y) / t.z + cproj0.z, (cproj1.x * t.x + cproj1.y * t.y) / t.z + cproj1.z); } }; void call(const DevMem2D_ src, const float* rot, const float* transl, const float* proj, DevMem2D_ dst, cudaStream_t stream) { cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(cproj0, proj, sizeof(float) * 3)); cudaSafeCall(cudaMemcpyToSymbol(cproj1, proj + 3, sizeof(float) * 3)); cv::gpu::device::transform(src, dst, ProjectOp(), WithOutMask(), stream); } } // namespace project_points namespace solve_pnp_ransac { __constant__ float3 crot_matrices[SOLVE_PNP_RANSAC_MAX_NUM_ITERS * 3]; __constant__ float3 ctransl_vectors[SOLVE_PNP_RANSAC_MAX_NUM_ITERS]; int maxNumIters() { return SOLVE_PNP_RANSAC_MAX_NUM_ITERS; } __device__ __forceinline__ float sqr(float x) { return x * x; } __global__ void computeHypothesisScoresKernel( const int num_points, const float3* object, const float2* image, const float dist_threshold, int* g_num_inliers) { const float3* const &rot_mat = crot_matrices + blockIdx.x * 3; const float3 &transl_vec = ctransl_vectors[blockIdx.x]; int num_inliers = 0; for (int i = threadIdx.x; i < num_points; i += blockDim.x) { float3 p = object[i]; p = make_float3( rot_mat[0].x * p.x + rot_mat[0].y * p.y + rot_mat[0].z * p.z + transl_vec.x, rot_mat[1].x * p.x + rot_mat[1].y * p.y + rot_mat[1].z * p.z + transl_vec.y, rot_mat[2].x * p.x + rot_mat[2].y * p.y + rot_mat[2].z * p.z + transl_vec.z); p.x /= p.z; p.y /= p.z; float2 image_p = image[i]; if (sqr(p.x - image_p.x) + sqr(p.y - image_p.y) < dist_threshold) ++num_inliers; } extern __shared__ float s_num_inliers[]; s_num_inliers[threadIdx.x] = num_inliers; __syncthreads(); for (int step = blockDim.x / 2; step > 0; step >>= 1) { if (threadIdx.x < step) s_num_inliers[threadIdx.x] += s_num_inliers[threadIdx.x + step]; __syncthreads(); } if (threadIdx.x == 0) g_num_inliers[blockIdx.x] = s_num_inliers[0]; } void computeHypothesisScores( const int num_hypotheses, const int num_points, const float* rot_matrices, const float3* transl_vectors, const float3* object, const float2* image, const float dist_threshold, int* hypothesis_scores) { cudaSafeCall(cudaMemcpyToSymbol(crot_matrices, rot_matrices, num_hypotheses * 3 * sizeof(float3))); cudaSafeCall(cudaMemcpyToSymbol(ctransl_vectors, transl_vectors, num_hypotheses * sizeof(float3))); dim3 threads(256); dim3 grid(num_hypotheses); int smem_size = threads.x * sizeof(float); computeHypothesisScoresKernel<<>>( num_points, object, image, dist_threshold, hypothesis_scores); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } } // namespace solvepnp_ransac }}} // namespace cv { namespace gpu { namespace device