/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" namespace cv { namespace ocl { // The function calculates center of gravity and the central second order moments static void icvCompleteMomentState( CvMoments* moments ) { double cx = 0, cy = 0; double mu20, mu11, mu02; assert( moments != 0 ); moments->inv_sqrt_m00 = 0; if( fabs(moments->m00) > DBL_EPSILON ) { double inv_m00 = 1. / moments->m00; cx = moments->m10 * inv_m00; cy = moments->m01 * inv_m00; moments->inv_sqrt_m00 = std::sqrt( fabs(inv_m00) ); } // mu20 = m20 - m10*cx mu20 = moments->m20 - moments->m10 * cx; // mu11 = m11 - m10*cy mu11 = moments->m11 - moments->m10 * cy; // mu02 = m02 - m01*cy mu02 = moments->m02 - moments->m01 * cy; moments->mu20 = mu20; moments->mu11 = mu11; moments->mu02 = mu02; // mu30 = m30 - cx*(3*mu20 + cx*m10) moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10); mu11 += mu11; // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20; // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02; // mu03 = m03 - cy*(3*mu02 + cy*m01) moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01); } static void icvContourMoments( CvSeq* contour, CvMoments* mom ) { if( contour->total ) { CvSeqReader reader; int lpt = contour->total; double a00, a10, a01, a20, a11, a02, a30, a21, a12, a03; cvStartReadSeq( contour, &reader, 0 ); size_t reader_size = lpt << 1; cv::Mat reader_mat(1,reader_size,CV_32FC1); bool is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2; if (!cv::ocl::Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE) && is_float) { CV_Error(CV_StsUnsupportedFormat, "Moments - double is not supported by your GPU!"); } if( is_float ) { for(size_t i = 0; i < reader_size; ++i) { reader_mat.at(0, i++) = ((CvPoint2D32f*)(reader.ptr))->x; reader_mat.at(0, i) = ((CvPoint2D32f*)(reader.ptr))->y; CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); } } else { for(size_t i = 0; i < reader_size; ++i) { reader_mat.at(0, i++) = ((CvPoint*)(reader.ptr))->x; reader_mat.at(0, i) = ((CvPoint*)(reader.ptr))->y; CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); } } cv::ocl::oclMat dst_a(10, lpt, CV_64FC1); cv::ocl::oclMat reader_oclmat(reader_mat); int llength = std::min(lpt,128); size_t localThreads[3] = { llength, 1, 1}; size_t globalThreads[3] = { lpt, 1, 1}; vector > args; args.push_back( make_pair( sizeof(cl_int) , (void *)&contour->total )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&reader_oclmat.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_a.data )); cl_int dst_step = (cl_int)dst_a.step; args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_step )); openCLExecuteKernel(dst_a.clCxt, &moments, "icvContourMoments", globalThreads, localThreads, args, -1, -1); cv::Mat dst(dst_a); a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0.0; if (!cv::ocl::Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE)) { for (int i = 0; i < contour->total; ++i) { a00 += dst.at(0, i); a10 += dst.at(1, i); a01 += dst.at(2, i); a20 += dst.at(3, i); a11 += dst.at(4, i); a02 += dst.at(5, i); a30 += dst.at(6, i); a21 += dst.at(7, i); a12 += dst.at(8, i); a03 += dst.at(9, i); } } else { a00 = cv::sum(dst.row(0))[0]; a10 = cv::sum(dst.row(1))[0]; a01 = cv::sum(dst.row(2))[0]; a20 = cv::sum(dst.row(3))[0]; a11 = cv::sum(dst.row(4))[0]; a02 = cv::sum(dst.row(5))[0]; a30 = cv::sum(dst.row(6))[0]; a21 = cv::sum(dst.row(7))[0]; a12 = cv::sum(dst.row(8))[0]; a03 = cv::sum(dst.row(9))[0]; } double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60; if( fabs(a00) > FLT_EPSILON ) { if( a00 > 0 ) { db1_2 = 0.5; db1_6 = 0.16666666666666666666666666666667; db1_12 = 0.083333333333333333333333333333333; db1_24 = 0.041666666666666666666666666666667; db1_20 = 0.05; db1_60 = 0.016666666666666666666666666666667; } else { db1_2 = -0.5; db1_6 = -0.16666666666666666666666666666667; db1_12 = -0.083333333333333333333333333333333; db1_24 = -0.041666666666666666666666666666667; db1_20 = -0.05; db1_60 = -0.016666666666666666666666666666667; } // spatial moments mom->m00 = a00 * db1_2; mom->m10 = a10 * db1_6; mom->m01 = a01 * db1_6; mom->m20 = a20 * db1_12; mom->m11 = a11 * db1_24; mom->m02 = a02 * db1_12; mom->m30 = a30 * db1_20; mom->m21 = a21 * db1_60; mom->m12 = a12 * db1_60; mom->m03 = a03 * db1_20; icvCompleteMomentState( mom ); } } } static void ocl_cvMoments( const void* array, CvMoments* mom, int binary ) { const int TILE_SIZE = 256; int type, depth, cn, coi = 0; CvMat stub, *mat = (CvMat*)array; CvContour contourHeader; CvSeq* contour = 0; CvSeqBlock block; if( CV_IS_SEQ( array )) { contour = (CvSeq*)array; if( !CV_IS_SEQ_POINT_SET( contour )) CV_Error( CV_StsBadArg, "The passed sequence is not a valid contour" ); } if( !mom ) CV_Error( CV_StsNullPtr, "" ); memset( mom, 0, sizeof(*mom)); if( !contour ) { mat = cvGetMat( mat, &stub, &coi ); type = CV_MAT_TYPE( mat->type ); if( type == CV_32SC2 || type == CV_32FC2 ) { contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED, mat, &contourHeader, &block ); } } if( contour ) { icvContourMoments( contour, mom ); return; } type = CV_MAT_TYPE( mat->type ); depth = CV_MAT_DEPTH( type ); cn = CV_MAT_CN( type ); cv::Size size = cvGetMatSize( mat ); if( cn > 1 && coi == 0 ) CV_Error( CV_StsBadArg, "Invalid image type" ); if( size.width <= 0 || size.height <= 0 ) return; cv::Mat src0(mat); cv::ocl::oclMat src(src0); cv::Size tileSize; int blockx,blocky; if(size.width%TILE_SIZE == 0) blockx = size.width/TILE_SIZE; else blockx = size.width/TILE_SIZE + 1; if(size.height%TILE_SIZE == 0) blocky = size.height/TILE_SIZE; else blocky = size.height/TILE_SIZE + 1; oclMat dst_m(blocky * 10, blockx, CV_64FC1); oclMat sum(1, 10, CV_64FC1); int tile_width = std::min(size.width,TILE_SIZE); int tile_height = std::min(size.height,TILE_SIZE); size_t localThreads[3] = { tile_height, 1, 1}; size_t globalThreads[3] = { size.height, blockx, 1}; vector > args,args_sum; args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_m.data )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_m.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_m.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&blocky )); args.push_back( make_pair( sizeof(cl_int) , (void *)&depth )); args.push_back( make_pair( sizeof(cl_int) , (void *)&cn )); args.push_back( make_pair( sizeof(cl_int) , (void *)&coi )); args.push_back( make_pair( sizeof(cl_int) , (void *)&binary )); args.push_back( make_pair( sizeof(cl_int) , (void *)&TILE_SIZE )); openCLExecuteKernel(Context::getContext(), &moments, "CvMoments", globalThreads, localThreads, args, -1, depth); size_t localThreadss[3] = { 128, 1, 1}; size_t globalThreadss[3] = { 128, 1, 1}; args_sum.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows )); args_sum.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); args_sum.push_back( make_pair( sizeof(cl_int) , (void *)&tile_height )); args_sum.push_back( make_pair( sizeof(cl_int) , (void *)&tile_width )); args_sum.push_back( make_pair( sizeof(cl_int) , (void *)&TILE_SIZE )); args_sum.push_back( make_pair( sizeof(cl_mem) , (void *)&sum.data )); args_sum.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_m.data )); args_sum.push_back( make_pair( sizeof(cl_int) , (void *)&dst_m.step )); openCLExecuteKernel(Context::getContext(), &moments, "dst_sum", globalThreadss, localThreadss, args_sum, -1, -1); Mat dstsum(sum); mom->m00 = dstsum.at(0, 0); mom->m10 = dstsum.at(0, 1); mom->m01 = dstsum.at(0, 2); mom->m20 = dstsum.at(0, 3); mom->m11 = dstsum.at(0, 4); mom->m02 = dstsum.at(0, 5); mom->m30 = dstsum.at(0, 6); mom->m21 = dstsum.at(0, 7); mom->m12 = dstsum.at(0, 8); mom->m03 = dstsum.at(0, 9); icvCompleteMomentState( mom ); } Moments ocl_moments( InputArray _array, bool binaryImage ) { CvMoments om; Mat arr = _array.getMat(); CvMat c_array = arr; ocl_cvMoments(&c_array, &om, binaryImage); return om; } } }