/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_PRECOMP_H__ #define __OPENCV_PRECOMP_H__ #include "opencv2/opencv_modules.hpp" #include "cvconfig.h" #include "opencv2/core/utility.hpp" #include "opencv2/core/core_c.h" #include "opencv2/core/cuda.hpp" #include "opencv2/core/opengl.hpp" #include "opencv2/core/private.hpp" #include "opencv2/core/private.cuda.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/hal.hpp" #include #include #include #include #include #include #include #include #ifdef HAVE_TEGRA_OPTIMIZATION #include "opencv2/core/core_tegra.hpp" #else #define GET_OPTIMIZED(func) (func) #endif namespace cv { typedef void (*BinaryFunc)(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void*); BinaryFunc getConvertFunc(int sdepth, int ddepth); BinaryFunc getCopyMaskFunc(size_t esz); /* default memory block for sparse array elements */ #define CV_SPARSE_MAT_BLOCK (1<<12) /* initial hash table size */ #define CV_SPARSE_HASH_SIZE0 (1<<10) /* maximal average node_count/hash_size ratio beyond which hash table is resized */ #define CV_SPARSE_HASH_RATIO 3 // -128.f ... 255.f extern const float g_8x32fTab[]; #define CV_8TO32F(x) cv::g_8x32fTab[(x)+128] extern const ushort g_8x16uSqrTab[]; #define CV_SQR_8U(x) cv::g_8x16uSqrTab[(x)+255] extern const uchar g_Saturate8u[]; #define CV_FAST_CAST_8U(t) (assert(-256 <= (t) && (t) <= 512), cv::g_Saturate8u[(t)+256]) #define CV_MIN_8U(a,b) ((a) - CV_FAST_CAST_8U((a) - (b))) #define CV_MAX_8U(a,b) ((a) + CV_FAST_CAST_8U((b) - (a))) #if defined WIN32 || defined _WIN32 void deleteThreadAllocData(); #endif template struct OpAdd { typedef T1 type1; typedef T2 type2; typedef T3 rtype; T3 operator ()(const T1 a, const T2 b) const { return saturate_cast(a + b); } }; template struct OpSub { typedef T1 type1; typedef T2 type2; typedef T3 rtype; T3 operator ()(const T1 a, const T2 b) const { return saturate_cast(a - b); } }; template struct OpRSub { typedef T1 type1; typedef T2 type2; typedef T3 rtype; T3 operator ()(const T1 a, const T2 b) const { return saturate_cast(b - a); } }; template struct OpMin { typedef T type1; typedef T type2; typedef T rtype; T operator ()(const T a, const T b) const { return std::min(a, b); } }; template struct OpMax { typedef T type1; typedef T type2; typedef T rtype; T operator ()(const T a, const T b) const { return std::max(a, b); } }; inline Size getContinuousSize( const Mat& m1, int widthScale=1 ) { return m1.isContinuous() ? Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, int widthScale=1 ) { return (m1.flags & m2.flags & Mat::CONTINUOUS_FLAG) != 0 ? Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, const Mat& m3, int widthScale=1 ) { return (m1.flags & m2.flags & m3.flags & Mat::CONTINUOUS_FLAG) != 0 ? Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, const Mat& m3, const Mat& m4, int widthScale=1 ) { return (m1.flags & m2.flags & m3.flags & m4.flags & Mat::CONTINUOUS_FLAG) != 0 ? Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows); } inline Size getContinuousSize( const Mat& m1, const Mat& m2, const Mat& m3, const Mat& m4, const Mat& m5, int widthScale=1 ) { return (m1.flags & m2.flags & m3.flags & m4.flags & m5.flags & Mat::CONTINUOUS_FLAG) != 0 ? Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows); } struct NoVec { size_t operator()(const void*, const void*, void*, size_t) const { return 0; } }; extern volatile bool USE_SSE2; extern volatile bool USE_SSE4_2; extern volatile bool USE_AVX; extern volatile bool USE_AVX2; enum { BLOCK_SIZE = 1024 }; #if defined HAVE_IPP && (IPP_VERSION_MAJOR >= 7) #define ARITHM_USE_IPP 1 #else #define ARITHM_USE_IPP 0 #endif inline bool checkScalar(const Mat& sc, int atype, int sckind, int akind) { if( sc.dims > 2 || !sc.isContinuous() ) return false; Size sz = sc.size(); if(sz.width != 1 && sz.height != 1) return false; int cn = CV_MAT_CN(atype); if( akind == _InputArray::MATX && sckind != _InputArray::MATX ) return false; return sz == Size(1, 1) || sz == Size(1, cn) || sz == Size(cn, 1) || (sz == Size(1, 4) && sc.type() == CV_64F && cn <= 4); } inline bool checkScalar(InputArray sc, int atype, int sckind, int akind) { if( sc.dims() > 2 || !sc.isContinuous() ) return false; Size sz = sc.size(); if(sz.width != 1 && sz.height != 1) return false; int cn = CV_MAT_CN(atype); if( akind == _InputArray::MATX && sckind != _InputArray::MATX ) return false; return sz == Size(1, 1) || sz == Size(1, cn) || sz == Size(cn, 1) || (sz == Size(1, 4) && sc.type() == CV_64F && cn <= 4); } void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize ); #ifdef CV_COLLECT_IMPL_DATA struct ImplCollector { ImplCollector() { useCollection = false; implFlags = 0; } bool useCollection; // enable/disable impl data collection int implFlags; std::vector implCode; std::vector implFun; cv::Mutex mutex; }; #endif struct CoreTLSData { CoreTLSData() : device(0), useOpenCL(-1), useIPP(-1) { #ifdef HAVE_TEGRA_OPTIMIZATION useTegra = -1; #endif } RNG rng; int device; ocl::Queue oclQueue; int useOpenCL; // 1 - use, 0 - do not use, -1 - auto/not initialized int useIPP; // 1 - use, 0 - do not use, -1 - auto/not initialized #ifdef HAVE_TEGRA_OPTIMIZATION int useTegra; // 1 - use, 0 - do not use, -1 - auto/not initialized #endif }; TLSData& getCoreTlsData(); #if defined(BUILD_SHARED_LIBS) #if defined WIN32 || defined _WIN32 || defined WINCE #define CL_RUNTIME_EXPORT __declspec(dllexport) #elif defined __GNUC__ && __GNUC__ >= 4 #define CL_RUNTIME_EXPORT __attribute__ ((visibility ("default"))) #else #define CL_RUNTIME_EXPORT #endif #else #define CL_RUNTIME_EXPORT #endif extern bool __termination; // skip some cleanups, because process is terminating // (for example, if ExitProcess() was already called) } #include "opencv2/hal/intrin.hpp" #endif /*_CXCORE_INTERNAL_H_*/