// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Author: Jyrki Alakuijala (jyrki@google.com) // #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "./backward_references.h" #include "./histogram.h" #include "../dsp/lossless.h" #include "../utils/utils.h" static void HistogramClear(VP8LHistogram* const p) { memset(p->literal_, 0, sizeof(p->literal_)); memset(p->red_, 0, sizeof(p->red_)); memset(p->blue_, 0, sizeof(p->blue_)); memset(p->alpha_, 0, sizeof(p->alpha_)); memset(p->distance_, 0, sizeof(p->distance_)); p->bit_cost_ = 0; } void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, VP8LHistogram* const histo) { int i; for (i = 0; i < refs->size; ++i) { VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]); } } void VP8LHistogramCreate(VP8LHistogram* const p, const VP8LBackwardRefs* const refs, int palette_code_bits) { if (palette_code_bits >= 0) { p->palette_code_bits_ = palette_code_bits; } HistogramClear(p); VP8LHistogramStoreRefs(refs, p); } void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { p->palette_code_bits_ = palette_code_bits; HistogramClear(p); } VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { int i; VP8LHistogramSet* set; VP8LHistogram* bulk; const uint64_t total_size = sizeof(*set) + (uint64_t)size * sizeof(*set->histograms) + (uint64_t)size * sizeof(**set->histograms); uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); if (memory == NULL) return NULL; set = (VP8LHistogramSet*)memory; memory += sizeof(*set); set->histograms = (VP8LHistogram**)memory; memory += size * sizeof(*set->histograms); bulk = (VP8LHistogram*)memory; set->max_size = size; set->size = size; for (i = 0; i < size; ++i) { set->histograms[i] = bulk + i; VP8LHistogramInit(set->histograms[i], cache_bits); } return set; } // ----------------------------------------------------------------------------- void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, const PixOrCopy* const v) { if (PixOrCopyIsLiteral(v)) { ++histo->alpha_[PixOrCopyLiteral(v, 3)]; ++histo->red_[PixOrCopyLiteral(v, 2)]; ++histo->literal_[PixOrCopyLiteral(v, 1)]; ++histo->blue_[PixOrCopyLiteral(v, 0)]; } else if (PixOrCopyIsCacheIdx(v)) { int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); ++histo->literal_[literal_ix]; } else { int code, extra_bits_count, extra_bits_value; PrefixEncode(PixOrCopyLength(v), &code, &extra_bits_count, &extra_bits_value); ++histo->literal_[256 + code]; PrefixEncode(PixOrCopyDistance(v), &code, &extra_bits_count, &extra_bits_value); ++histo->distance_[code]; } } static double BitsEntropy(const int* const array, int n) { double retval = 0.; int sum = 0; int nonzeros = 0; int max_val = 0; int i; double mix; for (i = 0; i < n; ++i) { if (array[i] != 0) { sum += array[i]; ++nonzeros; retval -= VP8LFastSLog2(array[i]); if (max_val < array[i]) { max_val = array[i]; } } } retval += VP8LFastSLog2(sum); if (nonzeros < 5) { if (nonzeros <= 1) { return 0; } // Two symbols, they will be 0 and 1 in a Huffman code. // Let's mix in a bit of entropy to favor good clustering when // distributions of these are combined. if (nonzeros == 2) { return 0.99 * sum + 0.01 * retval; } // No matter what the entropy says, we cannot be better than min_limit // with Huffman coding. I am mixing a bit of entropy into the // min_limit since it produces much better (~0.5 %) compression results // perhaps because of better entropy clustering. if (nonzeros == 3) { mix = 0.95; } else { mix = 0.7; // nonzeros == 4. } } else { mix = 0.627; } { double min_limit = 2 * sum - max_val; min_limit = mix * min_limit + (1.0 - mix) * retval; return (retval < min_limit) ? min_limit : retval; } } // Returns the cost encode the rle-encoded entropy code. // The constants in this function are experimental. static double HuffmanCost(const int* const population, int length) { // Small bias because Huffman code length is typically not stored in // full length. static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; static const double kSmallBias = 9.1; double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias; int streak = 0; int i = 0; for (; i < length - 1; ++i) { ++streak; if (population[i] == population[i + 1]) { continue; } last_streak_hack: // population[i] points now to the symbol in the streak of same values. if (streak > 3) { if (population[i] == 0) { retval += 1.5625 + 0.234375 * streak; } else { retval += 2.578125 + 0.703125 * streak; } } else { if (population[i] == 0) { retval += 1.796875 * streak; } else { retval += 3.28125 * streak; } } streak = 0; } if (i == length - 1) { ++streak; goto last_streak_hack; } return retval; } static double PopulationCost(const int* const population, int length) { return BitsEntropy(population, length) + HuffmanCost(population, length); } static double ExtraCost(const int* const population, int length) { int i; double cost = 0.; for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2]; return cost; } // Estimates the Entropy + Huffman + other block overhead size cost. double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { return PopulationCost(p->literal_, VP8LHistogramNumCodes(p)) + PopulationCost(p->red_, 256) + PopulationCost(p->blue_, 256) + PopulationCost(p->alpha_, 256) + PopulationCost(p->distance_, NUM_DISTANCE_CODES) + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES) + ExtraCost(p->distance_, NUM_DISTANCE_CODES); } double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) { return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p)) + BitsEntropy(p->red_, 256) + BitsEntropy(p->blue_, 256) + BitsEntropy(p->alpha_, 256) + BitsEntropy(p->distance_, NUM_DISTANCE_CODES) + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES) + ExtraCost(p->distance_, NUM_DISTANCE_CODES); } // ----------------------------------------------------------------------------- // Various histogram combine/cost-eval functions // Adds 'in' histogram to 'out' static void HistogramAdd(const VP8LHistogram* const in, VP8LHistogram* const out) { int i; for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) { out->literal_[i] += in->literal_[i]; } for (i = 0; i < NUM_DISTANCE_CODES; ++i) { out->distance_[i] += in->distance_[i]; } for (i = 0; i < 256; ++i) { out->red_[i] += in->red_[i]; out->blue_[i] += in->blue_[i]; out->alpha_[i] += in->alpha_[i]; } } // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing // to the threshold value 'cost_threshold'. The score returned is // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. // Since the previous score passed is 'cost_threshold', we only need to compare // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out // early. static double HistogramAddEval(const VP8LHistogram* const a, const VP8LHistogram* const b, VP8LHistogram* const out, double cost_threshold) { double cost = 0; const double sum_cost = a->bit_cost_ + b->bit_cost_; int i; cost_threshold += sum_cost; // palette_code_bits_ is part of the cost evaluation for literal_. // TODO(skal): remove/simplify this palette_code_bits_? out->palette_code_bits_ = (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ : b->palette_code_bits_; for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) { out->literal_[i] = a->literal_[i] + b->literal_[i]; } cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out)); cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES); if (cost > cost_threshold) return cost; for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i]; cost += PopulationCost(out->red_, 256); if (cost > cost_threshold) return cost; for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i]; cost += PopulationCost(out->blue_, 256); if (cost > cost_threshold) return cost; for (i = 0; i < NUM_DISTANCE_CODES; ++i) { out->distance_[i] = a->distance_[i] + b->distance_[i]; } cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES); cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES); if (cost > cost_threshold) return cost; for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i]; cost += PopulationCost(out->alpha_, 256); out->bit_cost_ = cost; return cost - sum_cost; } // Same as HistogramAddEval(), except that the resulting histogram // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit // the term C(b) which is constant over all the evaluations. static double HistogramAddThresh(const VP8LHistogram* const a, const VP8LHistogram* const b, double cost_threshold) { int tmp[PIX_OR_COPY_CODES_MAX]; // <= max storage we'll need int i; double cost = -a->bit_cost_; for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) { tmp[i] = a->literal_[i] + b->literal_[i]; } // note that the tests are ordered so that the usually largest // cost shares come first. cost += PopulationCost(tmp, VP8LHistogramNumCodes(a)); cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES); if (cost > cost_threshold) return cost; for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i]; cost += PopulationCost(tmp, 256); if (cost > cost_threshold) return cost; for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i]; cost += PopulationCost(tmp, 256); if (cost > cost_threshold) return cost; for (i = 0; i < NUM_DISTANCE_CODES; ++i) { tmp[i] = a->distance_[i] + b->distance_[i]; } cost += PopulationCost(tmp, NUM_DISTANCE_CODES); cost += ExtraCost(tmp, NUM_DISTANCE_CODES); if (cost > cost_threshold) return cost; for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i]; cost += PopulationCost(tmp, 256); return cost; } // ----------------------------------------------------------------------------- static void HistogramBuildImage(int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, VP8LHistogramSet* const image) { int i; int x = 0, y = 0; const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); VP8LHistogram** const histograms = image->histograms; assert(histo_bits > 0); for (i = 0; i < backward_refs->size; ++i) { const PixOrCopy* const v = &backward_refs->refs[i]; const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); x += PixOrCopyLength(v); while (x >= xsize) { x -= xsize; ++y; } } } static uint32_t MyRand(uint32_t *seed) { *seed *= 16807U; if (*seed == 0) { *seed = 1; } return *seed; } static int HistogramCombine(const VP8LHistogramSet* const in, VP8LHistogramSet* const out, int iter_mult, int num_pairs, int num_tries_no_success) { int ok = 0; int i, iter; uint32_t seed = 0; int tries_with_no_success = 0; int out_size = in->size; const int outer_iters = in->size * iter_mult; const int min_cluster_size = 2; VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos)); VP8LHistogram* cur_combo = histos + 0; // trial merged histogram VP8LHistogram* best_combo = histos + 1; // best merged histogram so far if (histos == NULL) goto End; // Copy histograms from in[] to out[]. assert(in->size <= out->size); for (i = 0; i < in->size; ++i) { in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]); *out->histograms[i] = *in->histograms[i]; } // Collapse similar histograms in 'out'. for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) { double best_cost_diff = 0.; int best_idx1 = -1, best_idx2 = 1; int j; const int num_tries = (num_pairs < out_size) ? num_pairs : out_size; seed += iter; for (j = 0; j < num_tries; ++j) { double curr_cost_diff; // Choose two histograms at random and try to combine them. const uint32_t idx1 = MyRand(&seed) % out_size; const uint32_t tmp = (j & 7) + 1; const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1); const uint32_t idx2 = (idx1 + diff + 1) % out_size; if (idx1 == idx2) { continue; } // Calculate cost reduction on combining. curr_cost_diff = HistogramAddEval(out->histograms[idx1], out->histograms[idx2], cur_combo, best_cost_diff); if (curr_cost_diff < best_cost_diff) { // found a better pair? { // swap cur/best combo histograms VP8LHistogram* const tmp_histo = cur_combo; cur_combo = best_combo; best_combo = tmp_histo; } best_cost_diff = curr_cost_diff; best_idx1 = idx1; best_idx2 = idx2; } } if (best_idx1 >= 0) { *out->histograms[best_idx1] = *best_combo; // swap best_idx2 slot with last one (which is now unused) --out_size; if (best_idx2 != out_size) { out->histograms[best_idx2] = out->histograms[out_size]; out->histograms[out_size] = NULL; // just for sanity check. } tries_with_no_success = 0; } if (++tries_with_no_success >= num_tries_no_success) { break; } } out->size = out_size; ok = 1; End: free(histos); return ok; } // ----------------------------------------------------------------------------- // Histogram refinement // What is the bit cost of moving square_histogram from cur_symbol to candidate. static double HistogramDistance(const VP8LHistogram* const square_histogram, const VP8LHistogram* const candidate, double cost_threshold) { return HistogramAddThresh(candidate, square_histogram, cost_threshold); } // Find the best 'out' histogram for each of the 'in' histograms. // Note: we assume that out[]->bit_cost_ is already up-to-date. static void HistogramRemap(const VP8LHistogramSet* const in, const VP8LHistogramSet* const out, uint16_t* const symbols) { int i; for (i = 0; i < in->size; ++i) { int best_out = 0; double best_bits = HistogramDistance(in->histograms[i], out->histograms[0], 1.e38); int k; for (k = 1; k < out->size; ++k) { const double cur_bits = HistogramDistance(in->histograms[i], out->histograms[k], best_bits); if (cur_bits < best_bits) { best_bits = cur_bits; best_out = k; } } symbols[i] = best_out; } // Recompute each out based on raw and symbols. for (i = 0; i < out->size; ++i) { HistogramClear(out->histograms[i]); } for (i = 0; i < in->size; ++i) { HistogramAdd(in->histograms[i], out->histograms[symbols[i]]); } } int VP8LGetHistoImageSymbols(int xsize, int ysize, const VP8LBackwardRefs* const refs, int quality, int histo_bits, int cache_bits, VP8LHistogramSet* const image_in, uint16_t* const histogram_symbols) { int ok = 0; const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; const int histo_image_raw_size = histo_xsize * histo_ysize; // Heuristic params for HistogramCombine(). const int num_tries_no_success = 8 + (quality >> 1); const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4); const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3; VP8LHistogramSet* const image_out = VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits); if (image_out == NULL) return 0; // Build histogram image. HistogramBuildImage(xsize, histo_bits, refs, image_out); // Collapse similar histograms. if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs, num_tries_no_success)) { goto Error; } // Find the optimal map from original histograms to the final ones. HistogramRemap(image_out, image_in, histogram_symbols); ok = 1; Error: free(image_out); return ok; }