/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifdef L2GRAD inline float calc(int x, int y) { return sqrt((float)(x * x + y * y)); } #else inline float calc(int x, int y) { return (float)abs(x) + abs(y); } #endif // // Smoothing perpendicular to the derivative direction with a triangle filter // only support 3x3 Sobel kernel // h (-1) = 1, h (0) = 2, h (1) = 1 // h'(-1) = -1, h'(0) = 0, h'(1) = 1 // thus sobel 2D operator can be calculated as: // h'(x, y) = h'(x)h(y) for x direction // // src input 8bit single channel image data // dx_buf output dx buffer // dy_buf output dy buffer __kernel void __attribute__((reqd_work_group_size(16,16,1))) calcSobelRowPass ( __global const uchar * src, __global int * dx_buf, __global int * dy_buf, int rows, int cols, int src_step, int src_offset, int dx_buf_step, int dx_buf_offset, int dy_buf_step, int dy_buf_offset ) { dx_buf_step /= sizeof(*dx_buf); dx_buf_offset /= sizeof(*dx_buf); dy_buf_step /= sizeof(*dy_buf); dy_buf_offset /= sizeof(*dy_buf); int gidx = get_global_id(0); int gidy = get_global_id(1); int lidx = get_local_id(0); int lidy = get_local_id(1); __local int smem[16][18]; smem[lidy][lidx + 1] = src[gidx + min(gidy, rows - 1) * src_step + src_offset]; if(lidx == 0) { smem[lidy][0] = src[max(gidx - 1, 0) + min(gidy, rows - 1) * src_step + src_offset]; smem[lidy][17] = src[min(gidx + 16, cols - 1) + min(gidy, rows - 1) * src_step + src_offset]; } barrier(CLK_LOCAL_MEM_FENCE); if(gidy < rows && gidx < cols) { dx_buf[gidx + gidy * dx_buf_step + dx_buf_offset] = -smem[lidy][lidx] + smem[lidy][lidx + 2]; dy_buf[gidx + gidy * dy_buf_step + dy_buf_offset] = smem[lidy][lidx] + 2 * smem[lidy][lidx + 1] + smem[lidy][lidx + 2]; } } // calculate the magnitude of the filter pass combining both x and y directions // This is the buffered version(3x3 sobel) // // dx_buf dx buffer, calculated from calcSobelRowPass // dy_buf dy buffer, calculated from calcSobelRowPass // dx direvitive in x direction output // dy direvitive in y direction output // mag magnitude direvitive of xy output __kernel void __attribute__((reqd_work_group_size(16,16,1))) calcMagnitude_buf ( __global const int * dx_buf, __global const int * dy_buf, __global int * dx, __global int * dy, __global float * mag, int rows, int cols, int dx_buf_step, int dx_buf_offset, int dy_buf_step, int dy_buf_offset, int dx_step, int dx_offset, int dy_step, int dy_offset, int mag_step, int mag_offset ) { dx_buf_step /= sizeof(*dx_buf); dx_buf_offset /= sizeof(*dx_buf); dy_buf_step /= sizeof(*dy_buf); dy_buf_offset /= sizeof(*dy_buf); dx_step /= sizeof(*dx); dx_offset /= sizeof(*dx); dy_step /= sizeof(*dy); dy_offset /= sizeof(*dy); mag_step /= sizeof(*mag); mag_offset /= sizeof(*mag); int gidx = get_global_id(0); int gidy = get_global_id(1); int lidx = get_local_id(0); int lidy = get_local_id(1); __local int sdx[18][16]; __local int sdy[18][16]; sdx[lidy + 1][lidx] = dx_buf[gidx + min(gidy, rows - 1) * dx_buf_step + dx_buf_offset]; sdy[lidy + 1][lidx] = dy_buf[gidx + min(gidy, rows - 1) * dy_buf_step + dy_buf_offset]; if(lidy == 0) { sdx[0][lidx] = dx_buf[gidx + min(max(gidy-1,0),rows-1) * dx_buf_step + dx_buf_offset]; sdx[17][lidx] = dx_buf[gidx + min(gidy + 16, rows - 1) * dx_buf_step + dx_buf_offset]; sdy[0][lidx] = dy_buf[gidx + min(max(gidy-1,0),rows-1) * dy_buf_step + dy_buf_offset]; sdy[17][lidx] = dy_buf[gidx + min(gidy + 16, rows - 1) * dy_buf_step + dy_buf_offset]; } barrier(CLK_LOCAL_MEM_FENCE); if(gidx < cols && gidy < rows) { int x = sdx[lidy][lidx] + 2 * sdx[lidy + 1][lidx] + sdx[lidy + 2][lidx]; int y = -sdy[lidy][lidx] + sdy[lidy + 2][lidx]; dx[gidx + gidy * dx_step + dx_offset] = x; dy[gidx + gidy * dy_step + dy_offset] = y; mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] = calc(x, y); } } // calculate the magnitude of the filter pass combining both x and y directions // This is the non-buffered version(non-3x3 sobel) // // dx_buf dx buffer, calculated from calcSobelRowPass // dy_buf dy buffer, calculated from calcSobelRowPass // dx direvitive in x direction output // dy direvitive in y direction output // mag magnitude direvitive of xy output __kernel void calcMagnitude ( __global const int * dx, __global const int * dy, __global float * mag, int rows, int cols, int dx_step, int dx_offset, int dy_step, int dy_offset, int mag_step, int mag_offset ) { dx_step /= sizeof(*dx); dx_offset /= sizeof(*dx); dy_step /= sizeof(*dy); dy_offset /= sizeof(*dy); mag_step /= sizeof(*mag); mag_offset /= sizeof(*mag); int gidx = get_global_id(0); int gidy = get_global_id(1); if(gidy < rows && gidx < cols) { mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] = calc( dx[gidx + gidy * dx_step + dx_offset], dy[gidx + gidy * dy_step + dy_offset] ); } } ////////////////////////////////////////////////////////////////////////////////////////// // 0.4142135623730950488016887242097 is tan(22.5) #define CANNY_SHIFT 15 #ifdef DOUBLE_SUPPORT #define TG22 (int)(0.4142135623730950488016887242097*(1< low_thresh) { const int tg22x = x * TG22; const int tg67x = tg22x + (x << (1 + CANNY_SHIFT)); y <<= CANNY_SHIFT; if(y < tg22x) { if(m > smem[lidy + 1][lidx] && m >= smem[lidy + 1][lidx + 2]) { edge_type = 1 + (int)(m > high_thresh); } } else if (y > tg67x) { if(m > smem[lidy][lidx + 1]&& m >= smem[lidy + 2][lidx + 1]) { edge_type = 1 + (int)(m > high_thresh); } } else { if(m > smem[lidy][lidx + 1 - s]&& m > smem[lidy + 2][lidx + 1 + s]) { edge_type = 1 + (int)(m > high_thresh); } } } map[gidx + 1 + (gidy + 1) * map_step] = edge_type; } } #undef CANNY_SHIFT #undef TG22 struct PtrStepSz { __global int *ptr; int step; int rows, cols; }; inline int get(struct PtrStepSz data, int y, int x) { return *((__global int *)((__global char*)data.ptr + data.step * y + sizeof(int) * x)); } inline void set(struct PtrStepSz data, int y, int x, int value) { *((__global int *)((__global char*)data.ptr + data.step * y + sizeof(int) * x)) = value; } ////////////////////////////////////////////////////////////////////////////////////////// // do Hysteresis for pixel whose edge type is 1 // // If candidate pixel (edge type is 1) has a neighbour pixel (in 3x3 area) with type 2, it is believed to be part of an edge and // marked as edge. Each thread will iterate for 16 times to connect local edges. // Candidate pixel being identified as edge will then be tested if there is nearby potiential edge points. If there is, counter will // be incremented by 1 and the point location is stored. These potiential candidates will be processed further in next kernel. // // map raw edge type results calculated from calcMap. // st the potiential edge points found in this kernel call // counter the number of potiential edge points __kernel void __attribute__((reqd_work_group_size(16,16,1))) edgesHysteresisLocal ( __global int * map_ptr, __global ushort2 * st, __global unsigned int * counter, int rows, int cols, int map_step, int map_offset ) { #if 0 map_step /= sizeof(*map); map_offset /= sizeof(*map); const __global int* map = map_ptr + map_offset; __local int smem[18][18]; int gidx = get_global_id(0); int gidy = get_global_id(1); int lidx = get_local_id(0); int lidy = get_local_id(1); int grp_idx = get_global_id(0) & 0xFFFFF0; int grp_idy = get_global_id(1) & 0xFFFFF0; int tid = lidx + lidy * 16; int lx = tid % 18; int ly = tid / 18; if(ly < 14) { smem[ly][lx] = map[grp_idx + lx + min(grp_idy + ly, rows - 1) * map_step]; } if(ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols) { smem[ly + 14][lx] = map[grp_idx + lx + min(grp_idy + ly + 14, rows - 1) * map_step]; } barrier(CLK_LOCAL_MEM_FENCE); if(gidy < rows && gidx < cols) { int n; #pragma unroll for (int k = 0; k < 16; ++k) { n = 0; if (smem[lidy + 1][lidx + 1] == 1) { n += smem[lidy ][lidx ] == 2; n += smem[lidy ][lidx + 1] == 2; n += smem[lidy ][lidx + 2] == 2; n += smem[lidy + 1][lidx ] == 2; n += smem[lidy + 1][lidx + 2] == 2; n += smem[lidy + 2][lidx ] == 2; n += smem[lidy + 2][lidx + 1] == 2; n += smem[lidy + 2][lidx + 2] == 2; } if (n > 0) smem[lidy + 1][lidx + 1] = 2; } const int e = smem[lidy + 1][lidx + 1]; map[gidx + 1 + (gidy + 1) * map_step] = e; n = 0; if(e == 2) { n += smem[lidy ][lidx ] == 1; n += smem[lidy ][lidx + 1] == 1; n += smem[lidy ][lidx + 2] == 1; n += smem[lidy + 1][lidx ] == 1; n += smem[lidy + 1][lidx + 2] == 1; n += smem[lidy + 2][lidx ] == 1; n += smem[lidy + 2][lidx + 1] == 1; n += smem[lidy + 2][lidx + 2] == 1; } if(n > 0) { unsigned int ind = atomic_inc(counter); st[ind] = (ushort2)(gidx + 1, gidy + 1); } } #else struct PtrStepSz map = {((__global int *)((__global char*)map_ptr + map_offset)), map_step, rows, cols}; __local int smem[18][18]; int2 blockIdx = (int2)(get_group_id(0), get_group_id(1)); int2 blockDim = (int2)(get_local_size(0), get_local_size(1)); int2 threadIdx = (int2)(get_local_id(0), get_local_id(1)); const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; smem[threadIdx.y + 1][threadIdx.x + 1] = x < map.cols && y < map.rows ? get(map, y, x) : 0; if (threadIdx.y == 0) smem[0][threadIdx.x + 1] = y > 0 ? get(map, y - 1, x) : 0; if (threadIdx.y == blockDim.y - 1) smem[blockDim.y + 1][threadIdx.x + 1] = y + 1 < map.rows ? get(map, y + 1, x) : 0; if (threadIdx.x == 0) smem[threadIdx.y + 1][0] = x > 0 ? get(map, y, x - 1) : 0; if (threadIdx.x == blockDim.x - 1) smem[threadIdx.y + 1][blockDim.x + 1] = x + 1 < map.cols ? get(map, y, x + 1) : 0; if (threadIdx.x == 0 && threadIdx.y == 0) smem[0][0] = y > 0 && x > 0 ? get(map, y - 1, x - 1) : 0; if (threadIdx.x == blockDim.x - 1 && threadIdx.y == 0) smem[0][blockDim.x + 1] = y > 0 && x + 1 < map.cols ? get(map, y - 1, x + 1) : 0; if (threadIdx.x == 0 && threadIdx.y == blockDim.y - 1) smem[blockDim.y + 1][0] = y + 1 < map.rows && x > 0 ? get(map, y + 1, x - 1) : 0; if (threadIdx.x == blockDim.x - 1 && threadIdx.y == blockDim.y - 1) smem[blockDim.y + 1][blockDim.x + 1] = y + 1 < map.rows && x + 1 < map.cols ? get(map, y + 1, x + 1) : 0; barrier(CLK_LOCAL_MEM_FENCE); if (x >= map.cols || y >= map.rows) return; int n; #pragma unroll for (int k = 0; k < 16; ++k) { n = 0; if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1) { n += smem[threadIdx.y ][threadIdx.x ] == 2; n += smem[threadIdx.y ][threadIdx.x + 1] == 2; n += smem[threadIdx.y ][threadIdx.x + 2] == 2; n += smem[threadIdx.y + 1][threadIdx.x ] == 2; n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2; n += smem[threadIdx.y + 2][threadIdx.x ] == 2; n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2; n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2; } if (n > 0) smem[threadIdx.y + 1][threadIdx.x + 1] = 2; } const int e = smem[threadIdx.y + 1][threadIdx.x + 1]; set(map, y, x, e); n = 0; if (e == 2) { n += smem[threadIdx.y ][threadIdx.x ] == 1; n += smem[threadIdx.y ][threadIdx.x + 1] == 1; n += smem[threadIdx.y ][threadIdx.x + 2] == 1; n += smem[threadIdx.y + 1][threadIdx.x ] == 1; n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1; n += smem[threadIdx.y + 2][threadIdx.x ] == 1; n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1; n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1; } if (n > 0) { const int ind = atomic_inc(counter); st[ind] = (ushort2)(x, y); } #endif } __constant int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1}; __constant int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1}; #define stack_size 512 __kernel void __attribute__((reqd_work_group_size(128,1,1))) edgesHysteresisGlobal ( __global int * map, __global ushort2 * st1, __global ushort2 * st2, __global int * counter, int rows, int cols, int count, int map_step, int map_offset ) { map_step /= sizeof(*map); map_offset /= sizeof(*map); map += map_offset; int lidx = get_local_id(0); int grp_idx = get_group_id(0); int grp_idy = get_group_id(1); __local unsigned int s_counter; __local unsigned int s_ind; __local ushort2 s_st[stack_size]; if(lidx == 0) { s_counter = 0; } barrier(CLK_LOCAL_MEM_FENCE); int ind = mad24(grp_idy, (int)get_local_size(0), grp_idx); if(ind < count) { ushort2 pos = st1[ind]; if (lidx < 8) { pos.x += c_dx[lidx]; pos.y += c_dy[lidx]; if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && map[pos.x + pos.y * map_step] == 1) { map[pos.x + pos.y * map_step] = 2; ind = atomic_inc(&s_counter); s_st[ind] = pos; } } barrier(CLK_LOCAL_MEM_FENCE); while (s_counter > 0 && s_counter <= stack_size - get_local_size(0)) { const int subTaskIdx = lidx >> 3; const int portion = min(s_counter, (uint)(get_local_size(0)>> 3)); if (subTaskIdx < portion) pos = s_st[s_counter - 1 - subTaskIdx]; barrier(CLK_LOCAL_MEM_FENCE); if (lidx == 0) s_counter -= portion; barrier(CLK_LOCAL_MEM_FENCE); if (subTaskIdx < portion) { pos.x += c_dx[lidx & 7]; pos.y += c_dy[lidx & 7]; if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && map[pos.x + pos.y * map_step] == 1) { map[pos.x + pos.y * map_step] = 2; ind = atomic_inc(&s_counter); s_st[ind] = pos; } } barrier(CLK_LOCAL_MEM_FENCE); } if (s_counter > 0) { if (lidx == 0) { ind = atomic_add(counter, s_counter); s_ind = ind - s_counter; } barrier(CLK_LOCAL_MEM_FENCE); ind = s_ind; for (int i = lidx; i < (int)s_counter; i += get_local_size(0)) { st2[ind + i] = s_st[i]; } } } } #undef stack_size //Get the edge result. egde type of value 2 will be marked as an edge point and set to 255. Otherwise 0. // map edge type mappings // dst edge output __kernel void getEdges ( __global const int * map, __global uchar * dst, int rows, int cols, int map_step, int map_offset, int dst_step, int dst_offset ) { map_step /= sizeof(*map); map_offset /= sizeof(*map); int gidx = get_global_id(0); int gidy = get_global_id(1); if(gidy < rows && gidx < cols) { dst[gidx + gidy * dst_step] = (uchar)(-(map[gidx + 1 + (gidy + 1) * map_step + map_offset] >> 1)); } }