/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Zhang Ying, zhangying913@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ //warpAffine kernel //support data types: CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4, and three interpolation methods: NN, Linear, Cubic. #if defined (DOUBLE_SUPPORT) #ifdef cl_khr_fp64 #pragma OPENCL EXTENSION cl_khr_fp64:enable #elif defined (cl_amd_fp64) #pragma OPENCL EXTENSION cl_amd_fp64:enable #endif typedef double F; typedef double4 F4; #define convert_F4 convert_double4 #else typedef float F; typedef float4 F4; #define convert_F4 convert_float4 #endif #define INTER_BITS 5 #define INTER_TAB_SIZE (1 << INTER_BITS) #define INTER_SCALE 1.f/INTER_TAB_SIZE #define AB_BITS max(10, (int)INTER_BITS) #define AB_SCALE (1 << AB_BITS) #define INTER_REMAP_COEF_BITS 15 #define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) inline void interpolateCubic( float x, float* coeffs ) { const float A = -0.75f; coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A; coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f; coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f; coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; } /**********************************************8UC1********************************************* ***********************************************************************************************/ __kernel void warpAffineNN_C1_D0(__global uchar const * restrict src, __global uchar * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { dx = (dx<<2) - (dst_offset&3); int round_delta = (AB_SCALE>>1); int4 X, Y; int4 sx, sy; int4 DX = (int4)(dx, dx+1, dx+2, dx+3); DX = (DX << AB_BITS); F4 M0DX, M3DX; M0DX = M[0] * convert_F4(DX); M3DX = M[3] * convert_F4(DX); X = convert_int4(rint(M0DX)); Y = convert_int4(rint(M3DX)); int tmp1, tmp2; tmp1 = rint((M[1]*dy + M[2]) * AB_SCALE); tmp2 = rint((M[4]*dy + M[5]) * AB_SCALE); X += tmp1 + round_delta; Y += tmp2 + round_delta; sx = convert_int4(convert_short4(X >> AB_BITS)); sy = convert_int4(convert_short4(Y >> AB_BITS)); __global uchar4 * d = (__global uchar4 *)(dst+dst_offset+dy*dstStep+dx); uchar4 dval = *d; DX = (int4)(dx, dx+1, dx+2, dx+3); int4 dcon = DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows; int4 scon = sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows; int4 spos = src_offset + sy * srcStep + sx; uchar4 sval; sval.s0 = scon.s0 ? src[spos.s0] : 0; sval.s1 = scon.s1 ? src[spos.s1] : 0; sval.s2 = scon.s2 ? src[spos.s2] : 0; sval.s3 = scon.s3 ? src[spos.s3] : 0; dval = convert_uchar4(dcon) != (uchar4)(0,0,0,0) ? sval : dval; *d = dval; } } __kernel void warpAffineLinear_C1_D0(__global const uchar * restrict src, __global uchar * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { dx = (dx<<2) - (dst_offset&3); int round_delta = ((AB_SCALE >> INTER_BITS) >> 1); int4 X, Y; short4 ax, ay; int4 sx, sy; int4 DX = (int4)(dx, dx+1, dx+2, dx+3); DX = (DX << AB_BITS); F4 M0DX, M3DX; M0DX = M[0] * convert_F4(DX); M3DX = M[3] * convert_F4(DX); X = convert_int4(rint(M0DX)); Y = convert_int4(rint(M3DX)); int tmp1, tmp2; tmp1 = rint((M[1]*dy + M[2]) * AB_SCALE); tmp2 = rint((M[4]*dy + M[5]) * AB_SCALE); X += tmp1 + round_delta; Y += tmp2 + round_delta; X = X >> (AB_BITS - INTER_BITS); Y = Y >> (AB_BITS - INTER_BITS); sx = convert_int4(convert_short4(X >> INTER_BITS)); sy = convert_int4(convert_short4(Y >> INTER_BITS)); ax = convert_short4(X & (INTER_TAB_SIZE-1)); ay = convert_short4(Y & (INTER_TAB_SIZE-1)); uchar4 v0, v1, v2,v3; int4 scon0, scon1, scon2, scon3; int4 spos0, spos1, spos2, spos3; scon0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows); scon1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows); scon2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows); scon3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows); spos0 = src_offset + sy * srcStep + sx; spos1 = src_offset + sy * srcStep + sx + 1; spos2 = src_offset + (sy+1) * srcStep + sx; spos3 = src_offset + (sy+1) * srcStep + sx + 1; v0.s0 = scon0.s0 ? src[spos0.s0] : 0; v1.s0 = scon1.s0 ? src[spos1.s0] : 0; v2.s0 = scon2.s0 ? src[spos2.s0] : 0; v3.s0 = scon3.s0 ? src[spos3.s0] : 0; v0.s1 = scon0.s1 ? src[spos0.s1] : 0; v1.s1 = scon1.s1 ? src[spos1.s1] : 0; v2.s1 = scon2.s1 ? src[spos2.s1] : 0; v3.s1 = scon3.s1 ? src[spos3.s1] : 0; v0.s2 = scon0.s2 ? src[spos0.s2] : 0; v1.s2 = scon1.s2 ? src[spos1.s2] : 0; v2.s2 = scon2.s2 ? src[spos2.s2] : 0; v3.s2 = scon3.s2 ? src[spos3.s2] : 0; v0.s3 = scon0.s3 ? src[spos0.s3] : 0; v1.s3 = scon1.s3 ? src[spos1.s3] : 0; v2.s3 = scon2.s3 ? src[spos2.s3] : 0; v3.s3 = scon3.s3 ? src[spos3.s3] : 0; short4 itab0, itab1, itab2, itab3; float4 taby, tabx; taby = INTER_SCALE * convert_float4(ay); tabx = INTER_SCALE * convert_float4(ax); itab0 = convert_short4_sat(( (1.0f-taby)*(1.0f-tabx) * (float4)INTER_REMAP_COEF_SCALE )); itab1 = convert_short4_sat(( (1.0f-taby)*tabx * (float4)INTER_REMAP_COEF_SCALE )); itab2 = convert_short4_sat(( taby*(1.0f-tabx) * (float4)INTER_REMAP_COEF_SCALE )); itab3 = convert_short4_sat(( taby*tabx * (float4)INTER_REMAP_COEF_SCALE )); int4 val; uchar4 tval; val = convert_int4(v0) * convert_int4(itab0) + convert_int4(v1) * convert_int4(itab1) + convert_int4(v2) * convert_int4(itab2) + convert_int4(v3) * convert_int4(itab3); tval = convert_uchar4_sat ( (val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; __global uchar4 * d =(__global uchar4 *)(dst+dst_offset+dy*dstStep+dx); uchar4 dval = *d; DX = (int4)(dx, dx+1, dx+2, dx+3); int4 dcon = DX >= 0 && DX < dst_cols && dy >= 0 && dy < dst_rows; dval = convert_uchar4(dcon != 0) ? tval : dval; *d = dval; } } __kernel void warpAffineCubic_C1_D0(__global uchar * src, __global uchar * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = ((AB_SCALE>>INTER_BITS)>>1); int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; int X = X0 >> (AB_BITS - INTER_BITS); int Y = Y0 >> (AB_BITS - INTER_BITS); short sx = (short)(X >> INTER_BITS) - 1; short sy = (short)(Y >> INTER_BITS) - 1; short ay = (short)(Y & (INTER_TAB_SIZE-1)); short ax = (short)(X & (INTER_TAB_SIZE-1)); uchar v[16]; int i, j; #pragma unroll 4 for(i=0; i<4; i++) for(j=0; j<4; j++) { v[i*4+j] = (sx+j >= 0 && sx+j < src_cols && sy+i >= 0 && sy+i < src_rows) ? src[src_offset+(sy+i) * srcStep + (sx+j)] : 0; } short itab[16]; float tab1y[4], tab1x[4]; float axx, ayy; ayy = 1.f/INTER_TAB_SIZE * ay; axx = 1.f/INTER_TAB_SIZE * ax; interpolateCubic(ayy, tab1y); interpolateCubic(axx, tab1x); int isum = 0; #pragma unroll 16 for( i=0; i<16; i++ ) { F v = tab1y[(i>>2)] * tab1x[(i&3)]; isum += itab[i] = convert_short_sat( rint( v * INTER_REMAP_COEF_SCALE ) ); } if( isum != INTER_REMAP_COEF_SCALE ) { int k1, k2; int diff = isum - INTER_REMAP_COEF_SCALE; int Mk1=2, Mk2=2, mk1=2, mk2=2; for( k1 = 2; k1 < 4; k1++ ) for( k2 = 2; k2 < 4; k2++ ) { if( itab[(k1<<2)+k2] < itab[(mk1<<2)+mk2] ) mk1 = k1, mk2 = k2; else if( itab[(k1<<2)+k2] > itab[(Mk1<<2)+Mk2] ) Mk1 = k1, Mk2 = k2; } diff<0 ? (itab[(Mk1<<2)+Mk2]=(short)(itab[(Mk1<<2)+Mk2]-diff)) : (itab[(mk1<<2)+mk2]=(short)(itab[(mk1<<2)+mk2]-diff)); } if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) { int sum=0; for ( i =0; i<16; i++ ) { sum += v[i] * itab[i] ; } dst[dst_offset+dy*dstStep+dx] = convert_uchar_sat( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; } } } /**********************************************8UC4********************************************* ***********************************************************************************************/ __kernel void warpAffineNN_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = (AB_SCALE >> 1); int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; int sx0 = (short)(X0 >> AB_BITS); int sy0 = (short)(Y0 >> AB_BITS); if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) dst[(dst_offset>>2)+dy*(dstStep>>2)+dx]= (sx0>=0 && sx0=0 && sy0>2)+sy0*(srcStep>>2)+sx0] : (uchar4)0; } } __kernel void warpAffineLinear_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/INTER_TAB_SIZE/2; src_offset = (src_offset>>2); srcStep = (srcStep>>2); int tmp = (dx << AB_BITS); int X0 = rint(M[0] * tmp); int Y0 = rint(M[3] * tmp); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); short sx0 = (short)(X0 >> INTER_BITS); short sy0 = (short)(Y0 >> INTER_BITS); short ax0 = (short)(X0 & (INTER_TAB_SIZE-1)); short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1)); int4 v0, v1, v2, v3; v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? convert_int4(src[src_offset+sy0 * srcStep + sx0]) : 0; v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? convert_int4(src[src_offset+sy0 * srcStep + sx0+1]) : 0; v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? convert_int4(src[src_offset+(sy0+1) * srcStep + sx0]) : 0; v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? convert_int4(src[src_offset+(sy0+1) * srcStep + sx0+1]) : 0; int itab0, itab1, itab2, itab3; float taby, tabx; taby = 1.f/INTER_TAB_SIZE*ay0; tabx = 1.f/INTER_TAB_SIZE*ax0; itab0 = convert_short_sat(rint( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE )); itab1 = convert_short_sat(rint( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE )); itab2 = convert_short_sat(rint( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE )); itab3 = convert_short_sat(rint( taby*tabx * INTER_REMAP_COEF_SCALE )); int4 val; val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3; if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) dst[(dst_offset>>2)+dy*(dstStep>>2)+dx] = convert_uchar4_sat ( (val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; } } __kernel void warpAffineCubic_C4_D0(__global uchar4 const * restrict src, __global uchar4 * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = ((AB_SCALE>>INTER_BITS)>>1); src_offset = (src_offset>>2); srcStep = (srcStep>>2); dst_offset = (dst_offset>>2); dstStep = (dstStep>>2); int tmp = (dx << AB_BITS); int X0 = rint(M[0] * tmp); int Y0 = rint(M[3] * tmp); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); int sx = (short)(X0 >> INTER_BITS) - 1; int sy = (short)(Y0 >> INTER_BITS) - 1; int ay = (short)(Y0 & (INTER_TAB_SIZE-1)); int ax = (short)(X0 & (INTER_TAB_SIZE-1)); uchar4 v[16]; int i,j; #pragma unroll 4 for(i=0; i<4; i++) for(j=0; j<4; j++) { v[i*4+j] = (sx+j >= 0 && sx+j < src_cols && sy+i >= 0 && sy+i < src_rows) ? (src[src_offset+(sy+i) * srcStep + (sx+j)]) : (uchar4)0; } int itab[16]; float tab1y[4], tab1x[4]; float axx, ayy; ayy = INTER_SCALE * ay; axx = INTER_SCALE * ax; interpolateCubic(ayy, tab1y); interpolateCubic(axx, tab1x); int isum = 0; #pragma unroll 16 for( i=0; i<16; i++ ) { float tmp; tmp = tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE; itab[i] = rint(tmp); isum += itab[i]; } if( isum != INTER_REMAP_COEF_SCALE ) { int k1, k2; int diff = isum - INTER_REMAP_COEF_SCALE; int Mk1=2, Mk2=2, mk1=2, mk2=2; for( k1 = 2; k1 < 4; k1++ ) for( k2 = 2; k2 < 4; k2++ ) { if( itab[(k1<<2)+k2] < itab[(mk1<<2)+mk2] ) mk1 = k1, mk2 = k2; else if( itab[(k1<<2)+k2] > itab[(Mk1<<2)+Mk2] ) Mk1 = k1, Mk2 = k2; } diff<0 ? (itab[(Mk1<<2)+Mk2]=(short)(itab[(Mk1<<2)+Mk2]-diff)) : (itab[(mk1<<2)+mk2]=(short)(itab[(mk1<<2)+mk2]-diff)); } if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) { int4 sum=0; for ( i =0; i<16; i++ ) { sum += convert_int4(v[i]) * itab[i]; } dst[dst_offset+dy*dstStep+dx] = convert_uchar4_sat( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ) ; } } } /**********************************************32FC1******************************************** ***********************************************************************************************/ __kernel void warpAffineNN_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/2; int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; short sx0 = (short)(X0 >> AB_BITS); short sy0 = (short)(Y0 >> AB_BITS); if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) dst[(dst_offset>>2)+dy*dstStep+dx]= (sx0>=0 && sx0=0 && sy0>2)+sy0*srcStep+sx0] : 0; } } __kernel void warpAffineLinear_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/INTER_TAB_SIZE/2; src_offset = (src_offset>>2); int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); short sx0 = (short)(X0 >> INTER_BITS); short sy0 = (short)(Y0 >> INTER_BITS); short ax0 = (short)(X0 & (INTER_TAB_SIZE-1)); short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1)); float v0, v1, v2, v3; v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0] : 0; v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0+1] : 0; v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0] : 0; v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0+1] : 0; float tab[4]; float taby[2], tabx[2]; taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0; taby[1] = 1.f/INTER_TAB_SIZE*ay0; tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0; tabx[1] = 1.f/INTER_TAB_SIZE*ax0; tab[0] = taby[0] * tabx[0]; tab[1] = taby[0] * tabx[1]; tab[2] = taby[1] * tabx[0]; tab[3] = taby[1] * tabx[1]; float sum = 0; sum += v0 * tab[0] + v1 * tab[1] + v2 * tab[2] + v3 * tab[3]; if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) dst[(dst_offset>>2)+dy*dstStep+dx] = sum; } } __kernel void warpAffineCubic_C1_D5(__global float * src, __global float * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/INTER_TAB_SIZE/2; src_offset = (src_offset>>2); dst_offset = (dst_offset>>2); int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); short sx = (short)(X0 >> INTER_BITS) - 1; short sy = (short)(Y0 >> INTER_BITS) - 1; short ay = (short)(Y0 & (INTER_TAB_SIZE-1)); short ax = (short)(X0 & (INTER_TAB_SIZE-1)); float v[16]; int i; for(i=0; i<16; i++) v[i] = (sx+(i&3) >= 0 && sx+(i&3) < src_cols && sy+(i>>2) >= 0 && sy+(i>>2) < src_rows) ? src[src_offset+(sy+(i>>2)) * srcStep + (sx+(i&3))] : 0; float tab[16]; float tab1y[4], tab1x[4]; float axx, ayy; ayy = 1.f/INTER_TAB_SIZE * ay; axx = 1.f/INTER_TAB_SIZE * ax; interpolateCubic(ayy, tab1y); interpolateCubic(axx, tab1x); #pragma unroll 4 for( i=0; i<16; i++ ) { tab[i] = tab1y[(i>>2)] * tab1x[(i&3)]; } if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) { float sum = 0; #pragma unroll 4 for ( i =0; i<16; i++ ) { sum += v[i] * tab[i]; } dst[dst_offset+dy*dstStep+dx] = sum; } } } /**********************************************32FC4******************************************** ***********************************************************************************************/ __kernel void warpAffineNN_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/2; int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; short sx0 = (short)(X0 >> AB_BITS); short sy0 = (short)(Y0 >> AB_BITS); if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) dst[(dst_offset>>4)+dy*(dstStep>>2)+dx]= (sx0>=0 && sx0=0 && sy0>4)+sy0*(srcStep>>2)+sx0] : (float4)0; } } __kernel void warpAffineLinear_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/INTER_TAB_SIZE/2; src_offset = (src_offset>>4); dst_offset = (dst_offset>>4); srcStep = (srcStep>>2); dstStep = (dstStep>>2); int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); short sx0 = (short)(X0 >> INTER_BITS); short sy0 = (short)(Y0 >> INTER_BITS); short ax0 = (short)(X0 & (INTER_TAB_SIZE-1)); short ay0 = (short)(Y0 & (INTER_TAB_SIZE-1)); float4 v0, v1, v2, v3; v0 = (sx0 >= 0 && sx0 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0] : (float4)0; v1 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0 >= 0 && sy0 < src_rows) ? src[src_offset+sy0 * srcStep + sx0+1] : (float4)0; v2 = (sx0 >= 0 && sx0 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0] : (float4)0; v3 = (sx0+1 >= 0 && sx0+1 < src_cols && sy0+1 >= 0 && sy0+1 < src_rows) ? src[src_offset+(sy0+1) * srcStep + sx0+1] : (float4)0; float tab[4]; float taby[2], tabx[2]; taby[0] = 1.0f - 1.f/INTER_TAB_SIZE*ay0; taby[1] = 1.f/INTER_TAB_SIZE*ay0; tabx[0] = 1.0f - 1.f/INTER_TAB_SIZE*ax0; tabx[1] = 1.f/INTER_TAB_SIZE*ax0; tab[0] = taby[0] * tabx[0]; tab[1] = taby[0] * tabx[1]; tab[2] = taby[1] * tabx[0]; tab[3] = taby[1] * tabx[1]; float4 sum = 0; sum += v0 * tab[0] + v1 * tab[1] + v2 * tab[2] + v3 * tab[3]; if(dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) dst[dst_offset+dy*dstStep+dx] = sum; } } __kernel void warpAffineCubic_C4_D5(__global float4 * src, __global float4 * dst, int src_cols, int src_rows, int dst_cols, int dst_rows, int srcStep, int dstStep, int src_offset, int dst_offset, __constant F * M, int threadCols ) { int dx = get_global_id(0); int dy = get_global_id(1); if( dx < threadCols && dy < dst_rows) { int round_delta = AB_SCALE/INTER_TAB_SIZE/2; src_offset = (src_offset>>4); dst_offset = (dst_offset>>4); srcStep = (srcStep>>2); dstStep = (dstStep>>2); int X0 = rint(M[0] * dx * AB_SCALE); int Y0 = rint(M[3] * dx * AB_SCALE); X0 += rint((M[1]*dy + M[2]) * AB_SCALE) + round_delta; Y0 += rint((M[4]*dy + M[5]) * AB_SCALE) + round_delta; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); short sx = (short)(X0 >> INTER_BITS) - 1; short sy = (short)(Y0 >> INTER_BITS) - 1; short ay = (short)(Y0 & (INTER_TAB_SIZE-1)); short ax = (short)(X0 & (INTER_TAB_SIZE-1)); float4 v[16]; int i; for(i=0; i<16; i++) v[i] = (sx+(i&3) >= 0 && sx+(i&3) < src_cols && sy+(i>>2) >= 0 && sy+(i>>2) < src_rows) ? src[src_offset+(sy+(i>>2)) * srcStep + (sx+(i&3))] : (float4)0; float tab[16]; float tab1y[4], tab1x[4]; float axx, ayy; ayy = 1.f/INTER_TAB_SIZE * ay; axx = 1.f/INTER_TAB_SIZE * ax; interpolateCubic(ayy, tab1y); interpolateCubic(axx, tab1x); #pragma unroll 4 for( i=0; i<16; i++ ) { tab[i] = tab1y[(i>>2)] * tab1x[(i&3)]; } if( dx >= 0 && dx < dst_cols && dy >= 0 && dy < dst_rows) { float4 sum = 0; #pragma unroll 4 for ( i =0; i<16; i++ ) { sum += v[i] * tab[i]; } dst[dst_offset+dy*dstStep+dx] = sum; } } }