// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2019, Intel Corporation, all rights reserved. #include "precomp.hpp" #include "sumpixels.hpp" namespace cv { namespace { // Anonymous namespace to avoid exposing the implementation classes // // NOTE: Look at the bottom of the file for the entry-point function for external callers // // At the moment only 3 channel support untilted is supported // More channel support coming soon. // TODO: Add support for sqsum and 1,2, and 4 channels class IntegralCalculator_3Channel { public: IntegralCalculator_3Channel() {}; void calculate_integral_avx512(const uchar *src, size_t _srcstep, double *sum, size_t _sumstep, double *sqsum, size_t _sqsumstep, int width, int height, int cn) { const int srcstep = (int)(_srcstep/sizeof(uchar)); const int sumstep = (int)(_sumstep/sizeof(double)); const int sqsumstep = (int)(_sqsumstep/sizeof(double)); const int ops_per_line = width * cn; // Clear the first line of the sum as per spec (see integral documentation) // Also adjust the index of sum and sqsum to be at the real 0th element // and not point to the border pixel so it stays in sync with the src pointer memset( sum, 0, (ops_per_line+cn)*sizeof(double)); sum += cn; if (sqsum) { memset( sqsum, 0, (ops_per_line+cn)*sizeof(double)); sqsum += cn; } // Now calculate the integral over the whole image one line at a time for(int y = 0; y < height; y++) { const uchar * src_line = &src[y*srcstep]; double * sum_above = &sum[y*sumstep]; double * sum_line = &sum_above[sumstep]; double * sqsum_above = (sqsum) ? &sqsum[y*sqsumstep] : NULL; double * sqsum_line = (sqsum) ? &sqsum_above[sqsumstep] : NULL; integral_line_3channel_avx512(src_line, sum_line, sum_above, sqsum_line, sqsum_above, ops_per_line); } } static inline void integral_line_3channel_avx512(const uchar *srcs, double *sums, double *sums_above, double *sqsums, double *sqsums_above, int num_ops_in_line) { __m512i sum_accumulator = _mm512_setzero_si512(); // holds rolling sums for the line __m512i sqsum_accumulator = _mm512_setzero_si512(); // holds rolling sqsums for the line // The first element on each line must be zeroes as per spec (see integral documentation) set_border_pixel_value(sums, sqsums); // Do all 64 byte chunk operations then do the last bits that don't fit in a 64 byte chunk aligned_integral( srcs, sums, sums_above, sqsums, sqsums_above, sum_accumulator, sqsum_accumulator, num_ops_in_line); post_aligned_integral(srcs, sums, sums_above, sqsums, sqsums_above, sum_accumulator, sqsum_accumulator, num_ops_in_line); } static inline void set_border_pixel_value(double *sums, double *sqsums) { // Sets the border pixel value to 0s. // Note the hard coded -3 and the 0x7 mask is because we only support 3 channel right now __m512i zeroes = _mm512_setzero_si512(); _mm512_mask_storeu_epi64(&sums[-3], 0x7, zeroes); if (sqsums) _mm512_mask_storeu_epi64(&sqsums[-3], 0x7, zeroes); } static inline void aligned_integral(const uchar *&srcs, double *&sums, double *&sums_above, double *&sqsum, double *&sqsum_above, __m512i &sum_accumulator, __m512i &sqsum_accumulator, int num_ops_in_line) { // This function handles full 64 byte chunks of the source data at a time until it gets to the part of // the line that no longer contains a full 64 byte chunk. Other code will handle the last part. const int num_chunks = num_ops_in_line >> 6; // quick int divide by 64 for (int index_64byte_chunk = 0; index_64byte_chunk < num_chunks; index_64byte_chunk++){ integral_64_operations_avx512((__m512i *) srcs, (__m512i *) sums, (__m512i *) sums_above, (__m512i *) sqsum, (__m512i *) sqsum_above, 0xFFFFFFFFFFFFFFFF, sum_accumulator, sqsum_accumulator); srcs+=64; sums+=64; sums_above+=64; if (sqsum){ sqsum+= 64; sqsum_above+=64; } } } static inline void post_aligned_integral(const uchar *srcs, const double *sums, const double *sums_above, const double *sqsum, const double *sqsum_above, __m512i &sum_accumulator, __m512i &sqsum_accumulator, int num_ops_in_line) { // This function handles the last few straggling operations that are not a full chunk of 64 operations // We use the same algorithm, but we calculate a different operation mask using (num_ops % 64). const unsigned int num_operations = (unsigned int) num_ops_in_line & 0x3F; // Quick int modulo 64 if (num_operations > 0) { __mmask64 operation_mask = (1ULL << num_operations) - 1ULL; integral_64_operations_avx512((__m512i *) srcs, (__m512i *) sums, (__m512i *) sums_above, (__m512i *) sqsum, (__m512i *) sqsum_above, operation_mask, sum_accumulator, sqsum_accumulator); } } static inline void integral_64_operations_avx512(const __m512i *srcs, __m512i *sums, const __m512i *sums_above, __m512i *sqsums, const __m512i *sqsums_above, __mmask64 data_mask, __m512i &sum_accumulator, __m512i &sqsum_accumulator) { __m512i src_64byte_chunk = read_64_bytes(srcs, data_mask); for(int num_16byte_chunks=0; num_16byte_chunks<4; num_16byte_chunks++) { __m128i src_16bytes = _mm512_extracti64x2_epi64(src_64byte_chunk, 0x0); // Get lower 16 bytes of data for (int num_8byte_chunks = 0; num_8byte_chunks < 2; num_8byte_chunks++) { __m512i src_longs = convert_lower_8bytes_to_longs(src_16bytes); // Calculate integral for the sum on the 8 entries integral_8_operations(src_longs, sums_above, data_mask, sums, sum_accumulator); sums++; sums_above++; if (sqsums){ // Calculate integral for the sum on the 8 entries __m512i squared_source = _mm512_mullo_epi64(src_longs, src_longs); integral_8_operations(squared_source, sqsums_above, data_mask, sqsums, sqsum_accumulator); sqsums++; sqsums_above++; } // Prepare for next iteration of inner loop // shift source to align next 8 bytes to lane 0 and shift the mask src_16bytes = shift_right_8_bytes(src_16bytes); data_mask = data_mask >> 8; } // Prepare for next iteration of outer loop src_64byte_chunk = shift_right_16_bytes(src_64byte_chunk); } } static inline void integral_8_operations(const __m512i src_longs, const __m512i *above_values_ptr, __mmask64 data_mask, __m512i *results_ptr, __m512i &accumulator) { _mm512_mask_storeu_pd( results_ptr, // Store the result here data_mask, // Using the data mask to avoid overrunning the line calculate_integral( // Writing the value of the integral derived from: src_longs, // input data _mm512_maskz_loadu_pd(data_mask, above_values_ptr), // and the results from line above accumulator // keeping track of the accumulator ) ); } static inline __m512d calculate_integral(__m512i src_longs, const __m512d above_values, __m512i &accumulator) { __m512i carryover_idxs = _mm512_set_epi64(6, 5, 7, 6, 5, 7, 6, 5); // Align data to prepare for the adds: // shifts data left by 3 and 6 qwords(lanes) and gets rolling sum in all lanes // Vertical LANES: 76543210 // src_longs : HGFEDCBA // shited3lanes : + EDCBA // shifted6lanes : + BA // carry_over_idxs : + 65765765 (index position of result from previous iteration) // = integral __m512i shifted3lanes = _mm512_maskz_expand_epi64(0xF8, src_longs); __m512i shifted6lanes = _mm512_maskz_expand_epi64(0xC0, src_longs); __m512i carry_over = _mm512_permutex2var_epi64(accumulator, carryover_idxs, accumulator); // Do the adds in tree form (shift3 + shift 6) + (current_source_values + accumulator) __m512i sum_shift3and6 = _mm512_add_epi64(shifted3lanes, shifted6lanes); __m512i sum_src_carry = _mm512_add_epi64(src_longs, carry_over); accumulator = _mm512_add_epi64(sum_shift3and6, sum_src_carry); // Convert to packed double and add to the line above to get the true integral value __m512d accumulator_pd = _mm512_cvtepu64_pd(accumulator); __m512d integral_pd = _mm512_add_pd(accumulator_pd, above_values); return integral_pd; } static inline __m512i read_64_bytes(const __m512i *srcs, __mmask64 data_mask) { return _mm512_maskz_loadu_epi8(data_mask, srcs); } static inline __m512i convert_lower_8bytes_to_longs(__m128i src_16bytes) { return _mm512_cvtepu8_epi64(src_16bytes); } static inline __m128i shift_right_8_bytes(__m128i src_16bytes) { return _mm_maskz_compress_epi64(2, src_16bytes); } static inline __m512i shift_right_16_bytes(__m512i src_64byte_chunk) { return _mm512_maskz_compress_epi64(0xFC, src_64byte_chunk); } }; } // end of anonymous namespace namespace opt_AVX512_SKX { // This is the implementation for the external callers interface entry point. // It should be the only function called into this file from outside // Any new implementations should be directed from here void calculate_integral_avx512(const uchar *src, size_t _srcstep, double *sum, size_t _sumstep, double *sqsum, size_t _sqsumstep, int width, int height, int cn) { IntegralCalculator_3Channel calculator; calculator.calculate_integral_avx512(src, _srcstep, sum, _sumstep, sqsum, _sqsumstep, width, height, cn); } } // end namespace opt_AVX512_SXK } // end namespace cv