// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include // EXPECT_MAT_NEAR #include "opencv2/videoio.hpp" namespace opencv_test { namespace { class fisheyeTest : public ::testing::Test { protected: const static cv::Size imageSize; const static cv::Matx33d K; const static cv::Vec4d D; std::string datasets_repository_path; virtual void SetUp() { datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye"); } protected: std::string combine(const std::string& _item1, const std::string& _item2); }; const cv::Size fisheyeTest::imageSize(1280, 800); const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843, 0, 560.506767351568, 381.939424848348, 0, 0, 1); const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2) { std::string item1 = _item1, item2 = _item2; std::replace(item1.begin(), item1.end(), '\\', '/'); std::replace(item2.begin(), item2.end(), '\\', '/'); if (item1.empty()) return item2; if (item2.empty()) return item1; char last = item1[item1.size()-1]; return item1 + (last != '/' ? "/" : "") + item2; } TEST_F(fisheyeTest, projectPoints) { double cols = this->imageSize.width, rows = this->imageSize.height; const int N = 20; cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2; undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3)); cv::Vec2d* pts = distorted0.ptr(); cv::Vec2d c(this->K(0, 2), this->K(1, 2)); for(int y = 0, k = 0; y < N; ++y) for(int x = 0; x < N; ++x) { cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f)); pts[k++] = (point - c) * 0.85 + c; } cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D); cv::Vec2d* u1 = undist1.ptr(); cv::Vec3d* u2 = undist2.ptr(); for(int i = 0; i < (int)distorted0.total(); ++i) u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0); cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D); cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D); EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10); EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10); } TEST_F(fisheyeTest, distortUndistortPoints) { int width = imageSize.width; int height = imageSize.height; /* Create test points */ cv::Mat principalPoints = (cv::Mat_(5, 2) << K(0, 2), K(1, 2), // (cx, cy) /* Image corners */ 0, 0, 0, height, width, 0, width, height ); /* Random points inside image */ cv::Mat xy[2] = {}; xy[0].create(100, 1, CV_64F); theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x xy[1].create(100, 1, CV_64F); theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y cv::Mat randomPoints; merge(xy, 2, randomPoints); cv::Mat points0; cv::vconcat(principalPoints.reshape(2), randomPoints, points0); /* Test with random D set */ for (size_t i = 0; i < 10; ++i) { cv::Mat distortion(1, 4, CV_64F); theRNG().fill(distortion, cv::RNG::UNIFORM, -0.00001, 0.00001); /* Distort -> Undistort */ cv::Mat distortedPoints; cv::fisheye::distortPoints(points0, distortedPoints, K, distortion); cv::Mat undistortedPoints; cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion); EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8); /* Undistort -> Distort */ cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion); cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, distortion); EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8); } } TEST_F(fisheyeTest, distortUndistortPointsNewCameraFixed) { int width = imageSize.width; int height = imageSize.height; /* Random points inside image */ cv::Mat xy[2] = {}; xy[0].create(100, 1, CV_64F); theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x xy[1].create(100, 1, CV_64F); theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y cv::Mat randomPoints; merge(xy, 2, randomPoints); cv::Mat points0 = randomPoints; cv::Mat Reye = cv::Mat::eye(3, 3, CV_64FC1); cv::Mat Knew; cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, imageSize, Reye, Knew); /* Distort -> Undistort */ cv::Mat distortedPoints; cv::fisheye::distortPoints(points0, distortedPoints, Knew, K, D); cv::Mat undistortedPoints; cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, D, Reye, Knew); EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8); /* Undistort -> Distort */ cv::fisheye::undistortPoints(points0, undistortedPoints, K, D, Reye, Knew); cv::fisheye::distortPoints(undistortedPoints, distortedPoints, Knew, K, D); EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8); } TEST_F(fisheyeTest, distortUndistortPointsNewCameraRandom) { int width = imageSize.width; int height = imageSize.height; /* Create test points */ std::vector points0Vector; cv::Mat principalPoints = (cv::Mat_(5, 2) << K(0, 2), K(1, 2), // (cx, cy) /* Image corners */ 0, 0, 0, height, width, 0, width, height ); /* Random points inside image */ cv::Mat xy[2] = {}; xy[0].create(100, 1, CV_64F); theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x xy[1].create(100, 1, CV_64F); theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y cv::Mat randomPoints; merge(xy, 2, randomPoints); cv::Mat points0; cv::Mat Reye = cv::Mat::eye(3, 3, CV_64FC1); cv::vconcat(principalPoints.reshape(2), randomPoints, points0); /* Test with random D set */ for (size_t i = 0; i < 10; ++i) { cv::Mat distortion(1, 4, CV_64F); theRNG().fill(distortion, cv::RNG::UNIFORM, -0.001, 0.001); cv::Mat Knew; cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, distortion, imageSize, Reye, Knew); /* Distort -> Undistort */ cv::Mat distortedPoints; cv::fisheye::distortPoints(points0, distortedPoints, Knew, K, distortion); cv::Mat undistortedPoints; cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion, Reye, Knew); EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8); /* Undistort -> Distort */ cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion, Reye, Knew); cv::fisheye::distortPoints(undistortedPoints, distortedPoints, Knew, K, distortion); EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8); } } TEST_F(fisheyeTest, solvePnP) { const int n = 16; const cv::Matx33d R_mat ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, -6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, -5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); const cv::Vec3d T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); cv::Mat obj_points(1, n, CV_64FC3); theRNG().fill(obj_points, cv::RNG::NORMAL, 2, 1); obj_points = cv::abs(obj_points) * 10; cv::Mat R; cv::Rodrigues(R_mat, R); cv::Mat img_points; cv::fisheye::projectPoints(obj_points, img_points, R, T, this->K, this->D); cv::Mat rvec_pred; cv::Mat tvec_pred; bool converged = cv::fisheye::solvePnP(obj_points, img_points, this->K, this->D, rvec_pred, tvec_pred); EXPECT_MAT_NEAR(R, rvec_pred, 1e-6); EXPECT_MAT_NEAR(T, tvec_pred, 1e-6); ASSERT_TRUE(converged); } TEST_F(fisheyeTest, undistortImage) { // we use it to reduce patch size for images in testdata auto throwAwayHalf = [](Mat img) { int whalf = img.cols / 2, hhalf = img.rows / 2; Rect tl(0, 0, whalf, hhalf), br(whalf, hhalf, whalf, hhalf); img(tl) = 0; img(br) = 0; }; cv::Matx33d theK = this->K; cv::Mat theD = cv::Mat(this->D); std::string file = combine(datasets_repository_path, "stereo_pair_014.png"); cv::Matx33d newK = theK; cv::Mat distorted = cv::imread(file), undistorted; { newK(0, 0) = 100; newK(1, 1) = 100; cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); std::string imageFilename = combine(datasets_repository_path, "new_f_100.png"); cv::Mat correct = cv::imread(imageFilename); ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl; throwAwayHalf(correct); throwAwayHalf(undistorted); EXPECT_MAT_NEAR(correct, undistorted, 1e-10); } { double balance = 1.0; cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); std::string imageFilename = combine(datasets_repository_path, "balance_1.0.png"); cv::Mat correct = cv::imread(imageFilename); ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl; throwAwayHalf(correct); throwAwayHalf(undistorted); EXPECT_MAT_NEAR(correct, undistorted, 1e-10); } { double balance = 0.0; cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); std::string imageFilename = combine(datasets_repository_path, "balance_0.0.png"); cv::Mat correct = cv::imread(imageFilename); ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl; throwAwayHalf(correct); throwAwayHalf(undistorted); EXPECT_MAT_NEAR(correct, undistorted, 1e-10); } } TEST_F(fisheyeTest, undistortAndDistortImage) { cv::Matx33d K_src = this->K; cv::Mat D_src = cv::Mat(this->D); std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg"); cv::Matx33d K_dst = K_src; cv::Mat image = cv::imread(file), image_projected; cv::Vec4d D_dst_vec (-1.0, 0.0, 0.0, 0.0); cv::Mat D_dst = cv::Mat(D_dst_vec); int imageWidth = (int)this->imageSize.width; int imageHeight = (int)this->imageSize.height; cv::Mat imagePoints(imageHeight, imageWidth, CV_32FC2), undPoints, distPoints; cv::Vec2f* pts = imagePoints.ptr(); for(int y = 0, k = 0; y < imageHeight; ++y) { for(int x = 0; x < imageWidth; ++x) { cv::Vec2f point((float)x, (float)y); pts[k++] = point; } } cv::fisheye::undistortPoints(imagePoints, undPoints, K_dst, D_dst); cv::fisheye::distortPoints(undPoints, distPoints, K_src, D_src); cv::remap(image, image_projected, distPoints, cv::noArray(), cv::INTER_LINEAR); float dx, dy, r_sq; float R_MAX = 250; float imageCenterX = (float)imageWidth / 2; float imageCenterY = (float)imageHeight / 2; cv::Mat undPointsGt(imageHeight, imageWidth, CV_32FC2); cv::Mat imageGt(imageHeight, imageWidth, CV_8UC3); for(int y = 0; y < imageHeight; ++y) { for(int x = 0; x < imageWidth; ++x) { dx = x - imageCenterX; dy = y - imageCenterY; r_sq = dy * dy + dx * dx; Vec2f & und_vec = undPoints.at(y,x); Vec3b & pixel = image_projected.at(y,x); Vec2f & undist_vec_gt = undPointsGt.at(y,x); Vec3b & pixel_gt = imageGt.at(y,x); if (r_sq > R_MAX * R_MAX) { undist_vec_gt[0] = -1e6; undist_vec_gt[1] = -1e6; pixel_gt[0] = 0; pixel_gt[1] = 0; pixel_gt[2] = 0; } else { undist_vec_gt[0] = und_vec[0]; undist_vec_gt[1] = und_vec[1]; pixel_gt[0] = pixel[0]; pixel_gt[1] = pixel[1]; pixel_gt[2] = pixel[2]; } } } EXPECT_MAT_NEAR(undPoints, undPointsGt, 1e-10); EXPECT_MAT_NEAR(image_projected, imageGt, 1e-10); Vec2f dist_point_1 = distPoints.at(400, 640); Vec2f dist_point_1_gt(640.044f, 400.041f); Vec2f dist_point_2 = distPoints.at(400, 440); Vec2f dist_point_2_gt(409.731f, 403.029f); Vec2f dist_point_3 = distPoints.at(200, 640); Vec2f dist_point_3_gt(643.341f, 168.896f); Vec2f dist_point_4 = distPoints.at(300, 480); Vec2f dist_point_4_gt(463.402f, 290.317f); Vec2f dist_point_5 = distPoints.at(550, 750); Vec2f dist_point_5_gt(797.51f, 611.637f); EXPECT_MAT_NEAR(dist_point_1, dist_point_1_gt, 1e-2); EXPECT_MAT_NEAR(dist_point_2, dist_point_2_gt, 1e-2); EXPECT_MAT_NEAR(dist_point_3, dist_point_3_gt, 1e-2); EXPECT_MAT_NEAR(dist_point_4, dist_point_4_gt, 1e-2); EXPECT_MAT_NEAR(dist_point_5, dist_point_5_gt, 1e-2); // Add the "--test_debug" to arguments for file output if (cvtest::debugLevel > 0) cv::imwrite(combine(datasets_repository_path, "new_distortion.png"), image_projected); } TEST_F(fisheyeTest, jacobians) { int n = 10; cv::Mat X(1, n, CV_64FC3); cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F); cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F); cv::Mat k(4, 1, CV_64F); double alpha; cv::RNG r; r.fill(X, cv::RNG::NORMAL, 2, 1); X = cv::abs(X) * 10; r.fill(om, cv::RNG::NORMAL, 0, 1); om = cv::abs(om); r.fill(theT, cv::RNG::NORMAL, 0, 1); theT = cv::abs(theT); theT.at(2) = 4; theT *= 10; r.fill(f, cv::RNG::NORMAL, 0, 1); f = cv::abs(f) * 1000; r.fill(c, cv::RNG::NORMAL, 0, 1); c = cv::abs(c) * 1000; r.fill(k, cv::RNG::NORMAL, 0, 1); k*= 0.5; alpha = 0.01*r.gaussian(1); cv::Mat x1, x2, xpred; cv::Matx33d theK(f.at(0), alpha * f.at(0), c.at(0), 0, f.at(1), c.at(1), 0, 0, 1); cv::Mat jacobians; cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians); //test on T: cv::Mat dT(3, 1, CV_64FC1); r.fill(dT, cv::RNG::NORMAL, 0, 1); dT *= 1e-9*cv::norm(theT); cv::Mat T2 = theT + dT; cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on om: cv::Mat dom(3, 1, CV_64FC1); r.fill(dom, cv::RNG::NORMAL, 0, 1); dom *= 1e-9*cv::norm(om); cv::Mat om2 = om + dom; cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on f: cv::Mat df(2, 1, CV_64FC1); r.fill(df, cv::RNG::NORMAL, 0, 1); df *= 1e-9*cv::norm(f); cv::Matx33d K2 = theK + cv::Matx33d(df.at(0), df.at(0) * alpha, 0, 0, df.at(1), 0, 0, 0, 0); cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on c: cv::Mat dc(2, 1, CV_64FC1); r.fill(dc, cv::RNG::NORMAL, 0, 1); dc *= 1e-9*cv::norm(c); K2 = theK + cv::Matx33d(0, 0, dc.at(0), 0, 0, dc.at(1), 0, 0, 0); cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on k: cv::Mat dk(4, 1, CV_64FC1); r.fill(dk, cv::RNG::NORMAL, 0, 1); dk *= 1e-9*cv::norm(k); cv::Mat k2 = k + dk; cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on alpha: cv::Mat dalpha(1, 1, CV_64FC1); r.fill(dalpha, cv::RNG::NORMAL, 0, 1); dalpha *= 1e-9*cv::norm(f); double alpha2 = alpha + dalpha.at(0); K2 = theK + cv::Matx33d(0, f.at(0) * dalpha.at(0), 0, 0, 0, 0, 0, 0, 0); cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray()); xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); } }}