// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "convert.simd.hpp" #include "convert.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content namespace cv { namespace hal { void cvt16f32f(const hfloat* src, float* dst, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(cvt16f32f, (src, dst, len), CV_CPU_DISPATCH_MODES_ALL); } void cvt32f16f(const float* src, hfloat* dst, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(cvt32f16f, (src, dst, len), CV_CPU_DISPATCH_MODES_ALL); } void cvt32f16bf(const float* src, bfloat* dst, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(cvt32f16bf, (src, dst, len), CV_CPU_DISPATCH_MODES_ALL); } void addRNGBias32f(float* arr, const float* scaleBiasPairs, int len, int cn) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(addRNGBias32f, (arr, scaleBiasPairs, len, cn), CV_CPU_DISPATCH_MODES_ALL); } void addRNGBias64f(double* arr, const double* scaleBiasPairs, int len, int cn) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(addRNGBias64f, (arr, scaleBiasPairs, len, cn), CV_CPU_DISPATCH_MODES_ALL); } } // namespace BinaryFunc getConvertFunc(int sdepth, int ddepth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getConvertFunc, (sdepth, ddepth), CV_CPU_DISPATCH_MODES_ALL); } #ifdef HAVE_OPENCL static bool ocl_convertTo(InputArray src_, OutputArray dst_, int ddepth, bool noScale, double alpha, double beta) { CV_INSTRUMENT_REGION(); CV_Assert(ddepth >= 0); int stype = src_.type(); int sdepth = CV_MAT_DEPTH(stype); int cn = CV_MAT_CN(stype); int dtype = CV_MAKETYPE(ddepth, cn); int wdepth = (sdepth == CV_64F) ? CV_64F : CV_32F; bool needDouble = sdepth == CV_64F || ddepth == CV_64F; bool doubleCheck = true; if (needDouble) { doubleCheck = ocl::Device::getDefault().hasFP64(); } bool halfCheck = true; bool needHalf = sdepth == CV_16F || ddepth == CV_16F; if (needHalf) { halfCheck = ocl::Device::getDefault().hasFP16(); } if (!doubleCheck) return false; if (!halfCheck) return false; const int rowsPerWI = 4; char cvt[2][50]; ocl::Kernel k("convertTo", ocl::core::convert_oclsrc, format("-D srcT=%s -D WT=%s -D dstT=%s -D convertToWT=%s -D convertToDT=%s -D rowsPerWI=%d%s%s%s", ocl::typeToStr(sdepth), ocl::typeToStr(wdepth), ocl::typeToStr(ddepth), ocl::convertTypeStr(sdepth, wdepth, 1, cvt[0], sizeof(cvt[0])), ocl::convertTypeStr(wdepth, ddepth, 1, cvt[1], sizeof(cvt[1])), rowsPerWI, needDouble ? " -D DOUBLE_SUPPORT" : "", needHalf ? " -D HALF_SUPPORT" : "", noScale ? " -D NO_SCALE" : "" ) ); if (k.empty()) return false; UMat src = src_.getUMat(); dst_.createSameSize(src_, dtype); UMat dst = dst_.getUMat(); float alphaf = (float)alpha, betaf = (float)beta; if (noScale) k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn)); else if (wdepth == CV_32F) k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf); else k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alpha, beta); size_t globalsize[2] = { (size_t)dst.cols * cn, divUp((size_t)dst.rows, rowsPerWI) }; if (!k.run(2, globalsize, NULL, false)) return false; CV_IMPL_ADD(CV_IMPL_OCL); return true; } #endif void Mat::convertTo(OutputArray dst, int type_, double alpha, double beta) const { CV_INSTRUMENT_REGION(); if (empty()) { dst.release(); return; } int stype = type(); int sdepth = CV_MAT_DEPTH(stype); int ddepth = sdepth; if (type_ >= 0) ddepth = CV_MAT_DEPTH(type_); else ddepth = dst.fixedType() ? dst.depth() : sdepth; bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON; if (sdepth == ddepth && noScale) { copyTo(dst); return; } CV_OCL_RUN(dims <= 2 && dst.isUMat(), ocl_convertTo(*this, dst, ddepth, noScale, alpha, beta)) int cn = channels(); int dtype = CV_MAKETYPE(ddepth, cn); Mat src = *this; bool allowTransposed = dims == 1 || dst.kind() == _InputArray::STD_VECTOR || (dst.fixedSize() && dst.dims() == 1); dst.create( dims, size, dtype, -1, allowTransposed ); Mat dstMat = dst.getMat(); BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth); double scale[] = {alpha, beta}; CV_Assert( func != 0 ); if( dims <= 2 ) { Size sz = getContinuousSize2D(src, dstMat, cn); func(src.data, src.step, 0, 0, dstMat.data, dstMat.step, sz, scale); } else { const Mat* arrays[] = {&src, &dstMat, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); Size sz((int)(it.size*cn), 1); for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, scale); } } void UMat::convertTo(OutputArray dst, int type_, double alpha, double beta) const { CV_INSTRUMENT_REGION(); if (empty()) { dst.release(); return; } #ifdef HAVE_OPENCL int stype = type(); int sdepth = CV_MAT_DEPTH(stype); int ddepth = sdepth; if (type_ >= 0) ddepth = CV_MAT_DEPTH(type_); else ddepth = dst.fixedType() ? dst.depth() : sdepth; bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON; if (sdepth == ddepth && noScale) { copyTo(dst); return; } CV_OCL_RUN(dims <= 2, ocl_convertTo(*this, dst, ddepth, noScale, alpha, beta)) #endif // HAVE_OPENCL UMat src = *this; // Fake reference to itself. // Resolves issue 8693 in case of src == dst. Mat m = getMat(ACCESS_READ); m.convertTo(dst, type_, alpha, beta); (void)src; } } // namespace cv