/* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten. Below is the original copyright and the references */ /* Copyright (c) 2006, 2008 Edward Rosten All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: *Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. *Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. *Neither the name of the University of Cambridge nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* The references are: * Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 * Faster and better: A machine learning approach to corner detection E. Rosten, R. Porter and T. Drummond, PAMI, 2009 */ #include "precomp.hpp" #include "fast_score.hpp" namespace cv { template void FAST_t(InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression) { Mat img = _img.getMat(); const int K = patternSize/2, N = patternSize + K + 1; #if CV_SSE2 const int quarterPatternSize = patternSize/4; (void)quarterPatternSize; #endif int i, j, k, pixel[25]; makeOffsets(pixel, (int)img.step, patternSize); keypoints.clear(); threshold = std::min(std::max(threshold, 0), 255); #if CV_SSE2 __m128i delta = _mm_set1_epi8(-128), t = _mm_set1_epi8((char)threshold), K16 = _mm_set1_epi8((char)K); (void)K16; (void)delta; (void)t; #endif uchar threshold_tab[512]; for( i = -255; i <= 255; i++ ) threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0); AutoBuffer _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128); uchar* buf[3]; buf[0] = _buf; buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols; int* cpbuf[3]; cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1; cpbuf[1] = cpbuf[0] + img.cols + 1; cpbuf[2] = cpbuf[1] + img.cols + 1; memset(buf[0], 0, img.cols*3); for(i = 3; i < img.rows-2; i++) { const uchar* ptr = img.ptr(i) + 3; uchar* curr = buf[(i - 3)%3]; int* cornerpos = cpbuf[(i - 3)%3]; memset(curr, 0, img.cols); int ncorners = 0; if( i < img.rows - 3 ) { j = 3; #if CV_SSE2 if( patternSize == 16 ) { for(; j < img.cols - 16 - 3; j += 16, ptr += 16) { __m128i m0, m1; __m128i v0 = _mm_loadu_si128((const __m128i*)ptr); __m128i v1 = _mm_xor_si128(_mm_subs_epu8(v0, t), delta); v0 = _mm_xor_si128(_mm_adds_epu8(v0, t), delta); __m128i x0 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[0])), delta); __m128i x1 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[quarterPatternSize])), delta); __m128i x2 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[2*quarterPatternSize])), delta); __m128i x3 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[3*quarterPatternSize])), delta); m0 = _mm_and_si128(_mm_cmpgt_epi8(x0, v0), _mm_cmpgt_epi8(x1, v0)); m1 = _mm_and_si128(_mm_cmpgt_epi8(v1, x0), _mm_cmpgt_epi8(v1, x1)); m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x1, v0), _mm_cmpgt_epi8(x2, v0))); m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x1), _mm_cmpgt_epi8(v1, x2))); m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x2, v0), _mm_cmpgt_epi8(x3, v0))); m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x2), _mm_cmpgt_epi8(v1, x3))); m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x3, v0), _mm_cmpgt_epi8(x0, v0))); m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x3), _mm_cmpgt_epi8(v1, x0))); m0 = _mm_or_si128(m0, m1); int mask = _mm_movemask_epi8(m0); if( mask == 0 ) continue; if( (mask & 255) == 0 ) { j -= 8; ptr -= 8; continue; } __m128i c0 = _mm_setzero_si128(), c1 = c0, max0 = c0, max1 = c0; for( k = 0; k < N; k++ ) { __m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i*)(ptr + pixel[k])), delta); m0 = _mm_cmpgt_epi8(x, v0); m1 = _mm_cmpgt_epi8(v1, x); c0 = _mm_and_si128(_mm_sub_epi8(c0, m0), m0); c1 = _mm_and_si128(_mm_sub_epi8(c1, m1), m1); max0 = _mm_max_epu8(max0, c0); max1 = _mm_max_epu8(max1, c1); } max0 = _mm_max_epu8(max0, max1); int m = _mm_movemask_epi8(_mm_cmpgt_epi8(max0, K16)); for( k = 0; m > 0 && k < 16; k++, m >>= 1 ) if(m & 1) { cornerpos[ncorners++] = j+k; if(nonmax_suppression) curr[j+k] = (uchar)cornerScore(ptr+k, pixel, threshold); } } } #endif for( ; j < img.cols - 3; j++, ptr++ ) { int v = ptr[0]; const uchar* tab = &threshold_tab[0] - v + 255; int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]]; if( d == 0 ) continue; d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]]; d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]]; d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]]; if( d == 0 ) continue; d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]]; d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]]; d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]]; d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]]; if( d & 1 ) { int vt = v - threshold, count = 0; for( k = 0; k < N; k++ ) { int x = ptr[pixel[k]]; if(x < vt) { if( ++count > K ) { cornerpos[ncorners++] = j; if(nonmax_suppression) curr[j] = (uchar)cornerScore(ptr, pixel, threshold); break; } } else count = 0; } } if( d & 2 ) { int vt = v + threshold, count = 0; for( k = 0; k < N; k++ ) { int x = ptr[pixel[k]]; if(x > vt) { if( ++count > K ) { cornerpos[ncorners++] = j; if(nonmax_suppression) curr[j] = (uchar)cornerScore(ptr, pixel, threshold); break; } } else count = 0; } } } } cornerpos[-1] = ncorners; if( i == 3 ) continue; const uchar* prev = buf[(i - 4 + 3)%3]; const uchar* pprev = buf[(i - 5 + 3)%3]; cornerpos = cpbuf[(i - 4 + 3)%3]; ncorners = cornerpos[-1]; for( k = 0; k < ncorners; k++ ) { j = cornerpos[k]; int score = prev[j]; if( !nonmax_suppression || (score > prev[j+1] && score > prev[j-1] && score > pprev[j-1] && score > pprev[j] && score > pprev[j+1] && score > curr[j-1] && score > curr[j] && score > curr[j+1]) ) { keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score)); } } } } void FAST(InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression, int type) { switch(type) { case FastFeatureDetector::TYPE_5_8: FAST_t<8>(_img, keypoints, threshold, nonmax_suppression); break; case FastFeatureDetector::TYPE_7_12: FAST_t<12>(_img, keypoints, threshold, nonmax_suppression); break; case FastFeatureDetector::TYPE_9_16: FAST_t<16>(_img, keypoints, threshold, nonmax_suppression); break; } } void FAST(InputArray _img, std::vector& keypoints, int threshold, bool nonmax_suppression) { FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16); } /* * FastFeatureDetector */ FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression ) : threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type(FastFeatureDetector::TYPE_9_16) {} FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression, int _type ) : threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type(_type) {} void FastFeatureDetector::detectImpl( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); FAST( grayImage, keypoints, threshold, nonmaxSuppression, type ); KeyPointsFilter::runByPixelsMask( keypoints, mask ); } }