/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CUDAWARPING_HPP__ #define __OPENCV_CUDAWARPING_HPP__ #ifndef __cplusplus # error cudawarping.hpp header must be compiled as C++ #endif #include "opencv2/core/cuda.hpp" #include "opencv2/imgproc.hpp" /** @addtogroup cuda @{ @defgroup cudawarping Image Warping @} */ namespace cv { namespace cuda { //! @addtogroup cudawarping //! @{ /** @brief Applies a generic geometrical transformation to an image. @param src Source image. @param dst Destination image with the size the same as xmap and the type the same as src . @param xmap X values. Only CV_32FC1 type is supported. @param ymap Y values. Only CV_32FC1 type is supported. @param interpolation Interpolation method (see resize ). INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are supported for now. @param borderMode Pixel extrapolation method (see borderInterpolate ). BORDER_REFLECT101 , BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now. @param borderValue Value used in case of a constant border. By default, it is 0. @param stream Stream for the asynchronous version. The function transforms the source image using the specified map: \f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f] Values of pixels with non-integer coordinates are computed using the bilinear interpolation. @sa remap */ CV_EXPORTS void remap(InputArray src, OutputArray dst, InputArray xmap, InputArray ymap, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); /** @brief Resizes an image. @param src Source image. @param dst Destination image with the same type as src . The size is dsize (when it is non-zero) or the size is computed from src.size() , fx , and fy . @param dsize Destination image size. If it is zero, it is computed as: \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] Either dsize or both fx and fy must be non-zero. @param fx Scale factor along the horizontal axis. If it is zero, it is computed as: \f[\texttt{(double)dsize.width/src.cols}\f] @param fy Scale factor along the vertical axis. If it is zero, it is computed as: \f[\texttt{(double)dsize.height/src.rows}\f] @param interpolation Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are supported for now. @param stream Stream for the asynchronous version. @sa resize */ CV_EXPORTS void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); /** @brief Applies an affine transformation to an image. @param src Source image. CV_8U , CV_16U , CV_32S , or CV_32F depth and 1, 3, or 4 channels are supported. @param dst Destination image with the same type as src . The size is dsize . @param M *2x3* transformation matrix. @param dsize Size of the destination image. @param flags Combination of interpolation methods (see resize) and the optional flag WARP_INVERSE_MAP specifying that M is an inverse transformation ( dst=\>src ). Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are supported. @param borderMode @param borderValue @param stream Stream for the asynchronous version. @sa warpAffine */ CV_EXPORTS void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); /** @brief Builds transformation maps for affine transformation. @param M *2x3* transformation matrix. @param inverse Flag specifying that M is an inverse transformation ( dst=\>src ). @param dsize Size of the destination image. @param xmap X values with CV_32FC1 type. @param ymap Y values with CV_32FC1 type. @param stream Stream for the asynchronous version. @sa cuda::warpAffine , cuda::remap */ CV_EXPORTS void buildWarpAffineMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null()); /** @brief Applies a perspective transformation to an image. @param src Source image. CV_8U , CV_16U , CV_32S , or CV_32F depth and 1, 3, or 4 channels are supported. @param dst Destination image with the same type as src . The size is dsize . @param M *3x3* transformation matrix. @param dsize Size of the destination image. @param flags Combination of interpolation methods (see resize ) and the optional flag WARP_INVERSE_MAP specifying that M is the inverse transformation ( dst =\> src ). Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are supported. @param borderMode @param borderValue @param stream Stream for the asynchronous version. @sa warpPerspective */ CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); /** @brief Builds transformation maps for perspective transformation. @param M *3x3* transformation matrix. @param inverse Flag specifying that M is an inverse transformation ( dst=\>src ). @param dsize Size of the destination image. @param xmap X values with CV_32FC1 type. @param ymap Y values with CV_32FC1 type. @param stream Stream for the asynchronous version. @sa cuda::warpPerspective , cuda::remap */ CV_EXPORTS void buildWarpPerspectiveMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null()); /** @brief Builds plane warping maps. */ CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, InputArray T, float scale, OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null()); /** @brief Builds cylindrical warping maps. */ CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale, OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null()); /** @brief Builds spherical warping maps. */ CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale, OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null()); /** @brief Rotates an image around the origin (0,0) and then shifts it. @param src Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F depth. @param dst Destination image with the same type as src . The size is dsize . @param dsize Size of the destination image. @param angle Angle of rotation in degrees. @param xShift Shift along the horizontal axis. @param yShift Shift along the vertical axis. @param interpolation Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC are supported. @param stream Stream for the asynchronous version. @sa cuda::warpAffine */ CV_EXPORTS void rotate(InputArray src, OutputArray dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); /** @brief Smoothes an image and downsamples it. @param src Source image. @param dst Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same type as src . @param stream Stream for the asynchronous version. @sa pyrDown */ CV_EXPORTS void pyrDown(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); /** @brief Upsamples an image and then smoothes it. @param src Source image. @param dst Destination image. Will have Size(src.cols\*2, src.rows\*2) size and the same type as src . @param stream Stream for the asynchronous version. */ CV_EXPORTS void pyrUp(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); class CV_EXPORTS ImagePyramid : public Algorithm { public: virtual void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const = 0; }; CV_EXPORTS Ptr createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null()); //! @} }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAWARPING_HPP__ */