// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "../precomp.hpp" #include "layers_common.hpp" #include #include "opencv2/core/hal/hal.hpp" #include "opencv2/core/hal/intrin.hpp" #include "../op_timvx.hpp" #include "../ie_ngraph.hpp" #include #include namespace cv { namespace dnn { #if CV_SIMD128 static inline void v_expand_mul_add(const v_int8x16& a, const v_int8x16& b, v_int32x4& out0, v_int32x4& out1, v_int32x4& out2, v_int32x4& out3) { v_int16x8 a0, a1, b0, b1; v_expand(a, a0, a1); v_expand(b, b0, b1); v_int32x4 t0, t1; v_mul_expand(a0, b0, t0, t1); out0 = v_add(out0, t0); out1 = v_add(out1, t1); v_mul_expand(a1, b1, t0, t1); out2 = v_add(out2, t0); out3 = v_add(out3, t1); } #endif class BaseConvolutionLayerInt8Impl : public ConvolutionLayerInt8 { public: BaseConvolutionLayerInt8Impl(const LayerParams ¶ms) { setParamsFrom(params); getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode, adjust_pads, useWinograd); numOutput = params.get("num_output"); int ngroups = params.get("group", 1); CV_Assert(numOutput % ngroups == 0); input_sc = params.get("input_scale"); input_zp = params.get("input_zeropoint"); output_zp = params.get("zeropoints"); output_sc = params.get("scales"); per_channel = params.get("per_channel", true); if (kernel_size.size() == 2) { kernel = Size(kernel_size[1], kernel_size[0]); stride = Size(strides[1], strides[0]); for (int i = 0; i < pads_begin.size(); i++) { if (pads_begin[i] != pads_end[i]) CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer"); } pad = Size(pads_begin[1], pads_begin[0]); dilation = Size(dilations[1], dilations[0]); adjustPad.height = adjust_pads[0]; adjustPad.width = adjust_pads[1]; } for (int i = 0; i < adjust_pads.size(); i++) { CV_Assert(adjust_pads[i] < strides[i]); } } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); // blobs[0] - Weights (INT8) // blobs[1] - Biases (INT32) // blobs[2] - Multipliers for convolution output stage (FP32) CV_Assert(!inputs.empty() && blobs.size() == 3); MatSize weightShape = blobs[0].size; CV_Assert(inputs[0].dims == outputs[0].dims); if (weightShape.dims() == 3) { kernel_size.resize(1, kernel_size[0]); strides.resize(1, strides[0]); dilations.resize(1, dilations[0]); pads_begin.resize(1, pads_begin[0]); pads_end.resize(1, pads_end[0]); } CV_Assert(weightShape.dims() == kernel_size.size() + 2); for (int i = 0; i < kernel_size.size(); i++) { CV_Assert(weightShape[i + 2] == kernel_size[i]); } const Mat &input = inputs[0]; CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || input.dims == 4 || input.dims == 5) && input.type() == CV_8S); for (size_t i = 0; i < outputs.size(); i++) { CV_Assert(inputs[i].type() == input.type()); CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]); for (int j = 0; j < inputs[i].dims; j++) { CV_Assert(inputs[i].size[j] == input.size[j]); } } std::vector inpShape; std::vector outShape; for (int i = 2; i < inputs[0].dims; i++) { inpShape.push_back(inputs[0].size[i]); outShape.push_back(outputs[0].size[i]); } getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end); if (pads_begin.size() == 2) { for (int i = 0; i < pads_begin.size(); i++) { if (pads_begin[i] != pads_end[i]) CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer"); } pad = Size(pads_begin[1], pads_begin[0]); } } virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0; bool is1x1() const { return (kernel.height == 1 && kernel.width == 1) && (stride.height == 1 && stride.width == 1) && (dilation.height == 1 && dilation.width == 1); } virtual bool tryFuse(Ptr& top) CV_OVERRIDE { Mat w, b; top->getScaleShift(w, b); if (w.empty() && b.empty()) return false; CV_Assert((w.empty() || w.type() == CV_32F) && (b.empty() || b.type() == CV_32F)); float new_sc; int new_zp; top->getScaleZeropoint(new_sc, new_zp); fuseWeights(w, b, new_sc); output_sc = new_sc; output_zp = new_zp; return true; } virtual void fuseWeights(const Mat& w_, const Mat& b_, const float& new_sc) = 0; }; //TODO: simultaneously convolution and bias addition for cache optimization class ConvolutionLayerInt8Impl CV_FINAL : public BaseConvolutionLayerInt8Impl { public: enum { VEC_ALIGN = 32, DFT_TYPE = CV_8S }; Mat weightsMat; std::vector biasvec; std::vector outputMultiplier; Mat activationLUT; Ptr activ; ConvolutionLayerInt8Impl(const LayerParams ¶ms) : BaseConvolutionLayerInt8Impl(params){} MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE { CV_Assert(!blobs.empty()); int dims = inpShape.size(); int inpD = dims == 5 ? inpShape[2] : 1; int inpH = inpShape[dims - 2]; int inpW = inpShape.back(); int inpGroupCn = blobs[0].size[1]; int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); return shape(inpD * inpH * inpW, ksize); } virtual bool supportBackend(int backendId) CV_OVERRIDE { size_t ksize = kernel_size.size(); #ifdef HAVE_TIMVX if (backendId == DNN_BACKEND_TIMVX) { /* only Conv1d and Conv2d supported. */ if (ksize == 2 || ksize == 1) return true; return false; } #endif // Only default backend and Conv1D/Conv2D/Conv3D are supported return (backendId == DNN_BACKEND_OPENCV && ksize >= 1 && ksize <= 3) || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH; } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(!blobs.empty()); const int* weightShape = blobs[0].size.p; CV_Assert(blobs[1].total() == (size_t)weightShape[0]); internals.clear(); CV_Assert(inputs.size() != 0); std::vector inpShape(inputs[0].begin() + 2, inputs[0].end()); int outCn = weightShape[0]; std::vector outShape; outShape.push_back(inputs[0][0]); outShape.push_back(outCn); int inpCn = inputs[0][1]; if (padMode.empty()) { for (int i = 0; i < inpShape.size(); i++) outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1); } else { getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape); } int ngroups = inpCn / weightShape[1]; if (ngroups == 0 || ngroups * weightShape[1] != inpCn) CV_Error(Error::StsError, format("Number of input channels should " "be multiple of %d but got %d", weightShape[1], inpCn)); CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0); outputs.resize(1, outShape); return false; } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { BaseConvolutionLayerInt8Impl::finalize(inputs_arr, outputs_arr); std::vector inputs; inputs_arr.getMatVector(inputs); // prepare weightsMat where each row is aligned and has enough zero padding on the right to // use vectorized (i.e. with intrinsics) loops without tail processing Mat wm = blobs[0].reshape(1, numOutput); if( wm.step1() % VEC_ALIGN != 0 ) { int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); Mat wm_buffer = Mat(numOutput, newcols, wm.type()); Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); wm_padding.setTo(Scalar::all(0)); Mat wm_aligned = wm_buffer.colRange(0, wm.cols); wm.copyTo(wm_aligned); wm = wm_aligned; } weightsMat = wm; Mat biasMat = blobs[1]; biasvec.resize(numOutput+2); Mat outMult = blobs[2]; outputMultiplier.resize(numOutput+2); for(int i = 0; i < numOutput; i++ ) { biasvec[i] = biasMat.at(i); outputMultiplier[i] = outMult.at(i); } } bool setActivation(const Ptr& layer) CV_OVERRIDE { // TODO! add activation in convolution. #ifdef HAVE_TIMVX if (preferableTarget == DNN_TARGET_NPU) return false; #endif Ptr activ_int8 = layer.dynamicCast(); if (!activ_int8.empty()) { activ = activ_int8; if (!activ_int8->blobs.empty()) activ_int8->blobs[0].convertTo(activationLUT, CV_32S); return true; } return false; } virtual bool tryFuse(Ptr& top) CV_OVERRIDE { return BaseConvolutionLayerInt8Impl::tryFuse(top); } void fuseWeights(const Mat& w_, const Mat& b_, const float& new_sc) CV_OVERRIDE { const int outCn = weightsMat.size[0]; Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at(0))) : w_; Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at(0))) : b_; CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2, w.empty() || outCn == w.total(), b.empty() || outCn == b.total()); for (int i = 0; i < outCn; ++i) { float off = outputMultiplier[i] * output_sc; if (!w.empty()) off *= w.at(i); if (!b.empty()) biasvec[i] += (int)std::round(b.at(i)/off); outputMultiplier[i] = off/new_sc; } biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1]; outputMultiplier[outCn] = outputMultiplier[outCn+1] = outputMultiplier[outCn-1]; } virtual Ptr initTimVX(void* timVXInfo_, const std::vector > &inputsWrapper, const std::vector > &outputsWrapper, bool isLast) CV_OVERRIDE { #ifdef HAVE_TIMVX /* TODO :support GroupConv; Ref: https://github.com/VeriSilicon/TIM-VX/blob/main/docs/Operators.md#conv2d Link Reference: https://github.com/VeriSilicon/TIM-VX/blob/main/src/tim/vx/ops/conv1d_test.cc */ // tvGraph Initialization. auto timVxInfo = reinterpret_cast(timVXInfo_); CV_Assert(timVxInfo); Ptr tvGraph = timVxInfo->getGraph(); CV_Assert(tvGraph); Ptr graph = tvGraph->graph; Mat tvWeightMat = blobs[0]; std::vector tvBiasVec; tvBiasVec.assign(biasvec.begin(), biasvec.end() - 2); Mat tvBiasMat(tvBiasVec); for (int i = 0; i < numOutput; i++) { tvBiasVec[i] += input_zp * (cv::sum(blobs[0].row(i))[0]); } // Padding Type tim::vx::PadType tvPadType; if (padMode.empty()) { tvPadType = tim::vx::PadType::AUTO; // TODO! check the padding type. } else if(padMode == "VALID") { tvPadType = tim::vx::PadType::VALID; } else if (padMode == "SAME") { tvPadType = tim::vx::PadType::SAME; } else { CV_Error(Error::StsError, "Unsupported padding mode in TimVXBackend!"); } size_t ksize = kernel_size.size(); std::vector inputsIndex; std::vector outputsIndex; CV_Assert(inputsWrapper.size() == 1); CV_Assert(ksize == 2 || ksize == 1); std::vector weight_scs, bias_scs; std::vector weight_zps, bias_zps; weight_scs.resize(numOutput); bias_scs.resize(numOutput); for (int i = 0; i < numOutput; i++) { bias_scs[i] = outputMultiplier[i] * output_sc; weight_scs[i] = bias_scs[i] / input_sc; } weight_zps.assign(numOutput, 0); bias_zps.assign(numOutput, 0); bool tvSymmetric; tvSymmetric = getQuantType(weight_scs, numOutput); // input Tensor auto inputWrapper = inputsWrapper[0].dynamicCast(); int input_index = -1, weight_index = -1, bias_index = -1, output_index = -1; if (inputWrapper->isTensor()) { input_index = tvGraph->getTensorIndex(inputWrapper->getTensor()); if (input_index == -1) { // Copy To New inputWrapper Mat tmp = inputWrapper->getMat(); inputWrapper = Ptr(new TimVXBackendWrapper(tmp)); } } if (!inputWrapper->isTensor()) { Ptr tvInputQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, input_sc, input_zp)); inputWrapper->createTensor(graph, tim::vx::TensorAttribute::INPUT, tvInputQuant); input_index = tvGraph->addWrapper(inputWrapper); } inputsIndex.push_back(input_index); // weight Tensor auto tvConvWeightShape = shape(tvWeightMat); Mat tvInputMat = inputWrapper->getMat(); // calculate group value. int group = tvInputMat.size[1] / tvWeightMat.size[1]; // TODO! It will be supported in future. if (tvSymmetric && tvWeightMat.total() == tvConvWeightShape[0]) return Ptr(); // Reverse weight shape From OpenCV NCHW to TimVX WHCN. std::reverse(tvConvWeightShape.begin(), tvConvWeightShape.end()); Ptr weightWrapper = Ptr(new TimVXBackendWrapper(tvWeightMat)); Ptr weightQuant; if (tvSymmetric) { int wtChanneldim = tvWeightMat.dims - 1; weightQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, wtChanneldim, weight_scs, weight_zps)); } else { weightQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, weight_scs[0], 0)); } weightWrapper->createTensor(graph,tim::vx::TensorAttribute::CONSTANT, weightQuant); weight_index = tvGraph->addWrapper(weightWrapper); inputsIndex.push_back(weight_index); // Bias Tensor Ptr biasWrapper = Ptr(new TimVXBackendWrapper(tvBiasMat)); Ptr biasQuant; if (tvSymmetric) { biasQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0, bias_scs, bias_zps)); } else { biasQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, weight_scs[0] * input_sc, 0)); } biasWrapper->createTensor(graph, tim::vx::TensorAttribute::CONSTANT, biasQuant); bias_index = tvGraph->addWrapper(biasWrapper); inputsIndex.push_back(bias_index); // Output tensor CV_Assert(outputsWrapper.size() == 1); auto outputWrapper = outputsWrapper[0].dynamicCast(); Ptr outputQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, output_sc, output_zp)); if (isLast) { // From OpenCV NCHW, to TimVX WHCN auto shapeType = getShapeTypeFromMat(outputWrapper->getMat()); // For Graph Output tensor, we need to set tensor shape before createTensor(). outputWrapper->setTensorShape(shapeType); outputWrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, outputQuant); } else { outputWrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, outputQuant); } output_index = tvGraph->addWrapper(outputWrapper); outputsIndex.push_back(output_index); std::shared_ptr tvConv; if (ksize == 2) // for conv2d { int multiplier = 0; if(group == tvConvWeightShape[3] && group != 1) multiplier = 1; if (group == 1 || (group == tvConvWeightShape[3] && group != 1)) // Conv2D || DeConv2D { if (tvPadType == tim::vx::PadType::AUTO) { tvConv = graph->CreateOperation( tvConvWeightShape[3], tvPadType, std::array({(uint32_t) kernel_size[1], (uint32_t) kernel_size[0]}), std::array({(uint32_t) strides[1], (uint32_t) strides[0]}), std::array({(uint32_t) dilations[1], (uint32_t) dilations[0]}), std::array({(uint32_t) pads_begin[1], (uint32_t) pads_end[1], (uint32_t) pads_begin[0], (uint32_t) pads_end[0]}), multiplier); } else { tvConv = graph->CreateOperation( tvPadType, std::array({(uint32_t) strides[1], (uint32_t) strides[0]}), std::array({(uint32_t) dilations[1], (uint32_t) dilations[0]}), multiplier); } } else { // GroupedConv2d if (tvPadType == tim::vx::PadType::AUTO) { tvConv = graph->CreateOperation( std::array({(uint32_t) pads_begin[1], (uint32_t) pads_end[1], (uint32_t) pads_begin[0], (uint32_t) pads_end[0]}), std::array({(uint32_t)strides[1], (uint32_t)strides[0]}), std::array({(uint32_t)dilations[1], (uint32_t)dilations[0]}), group); } else { tvConv = graph->CreateOperation( tvPadType, std::array({(uint32_t)strides[1], (uint32_t)strides[0]}), std::array({(uint32_t)dilations[1], (uint32_t)dilations[0]}), group); } } } else { // for Conv1d if (group != 1) CV_Error( CV_StsNotImplemented, " Grouped Conv1d or Depth-Wise Conv1d are not supported by " "TimVX Backend. Please try OpenCV Backend."); tvConv = graph->CreateOperation( tvConvWeightShape[2], tvPadType, (uint32_t)kernel_size[0], (uint32_t)strides[0],(uint32_t)dilations[0], std::array({(uint32_t)pads_begin[0], (uint32_t)pads_end[0]})); } // Create TimVXBackendNode Ptr tvBackendNode = new TimVXBackendNode(tvGraph, tvConv, inputsIndex, outputsIndex); return tvBackendNode; #endif // HAVE_TIMVX return Ptr(); } #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector > &inputs, const std::vector >& nodes) CV_OVERRIDE { CV_Assert(!blobs.empty()); CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1); CV_CheckTypeEQ(weightsMat.type(), CV_8S, ""); auto ieInpNode = nodes[0].dynamicCast()->node; std::vector dims = ieInpNode.get_shape(); CV_Check(dims.size(), dims.size() >= 3 && dims.size() <= 5, ""); CV_Assert(ieInpNode.get_element_type() == ngraph::element::f32); ngraph::Output ieWeights; if (nodes.size() > 1) ieWeights = nodes[1].dynamicCast()->node; const int inpCn = dims[1]; const int inpGroupCn = nodes.size() > 1 ? ieWeights.get_shape()[1] : blobs[0].size[1]; const int group = inpCn / inpGroupCn; std::vector kernel_shape; if (group != 1) { kernel_shape.push_back(group); } kernel_shape.push_back(numOutput / group); kernel_shape.push_back(inpCn / group); std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape)); if (nodes.size() == 1) { ieWeights = std::make_shared(ngraph::element::i8, kernel_shape, blobs[0].data); } else { auto shape = std::make_shared(ngraph::element::i64, ngraph::Shape{kernel_shape.size()}, std::vector(kernel_shape.begin(), kernel_shape.end())); ieWeights = std::make_shared(ieWeights, shape, true); } ngraph::op::PadType pad_type = ngraph::op::PadType::EXPLICIT; if (!padMode.empty()) pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::SAME_UPPER; ieInpNode = ngraphDequantize(ieInpNode, input_sc, input_zp); const float low = -128, high = 127; std::vector inpLows(numOutput, low); std::vector inpHighs(numOutput, high); std::vector outLows(numOutput); std::vector outHighs(numOutput); std::vector quantShape(kernel_shape.size(), 1); if (group != 1) { quantShape[0] = group; quantShape[1] = numOutput / group; } else { quantShape[0] = numOutput; } for (int i = 0; i < numOutput; ++i) { outLows[i] = low * outputMultiplier[i] * output_sc / input_sc; outHighs[i] = high * outputMultiplier[i] * output_sc / input_sc; } ieWeights = std::make_shared(ieWeights, ngraph::element::f32); ieWeights = std::make_shared(ieWeights, std::make_shared(ngraph::element::f32, quantShape, inpLows.data()), std::make_shared(ngraph::element::f32, quantShape, inpHighs.data()), std::make_shared(ngraph::element::f32, quantShape, outLows.data()), std::make_shared(ngraph::element::f32, quantShape, outHighs.data()), 256 // levels ); ngraph::Output conv_node; if (group != 1) { conv_node = std::make_shared( ieInpNode, ieWeights, ngraph::Strides(strides), ngraph::CoordinateDiff(std::vector(pads_begin.begin(), pads_begin.end())), ngraph::CoordinateDiff(std::vector(pads_end.begin(), pads_end.end())), ngraph::Strides(dilations), pad_type); } else { conv_node = std::make_shared( ieInpNode, ieWeights, ngraph::Strides(strides), ngraph::CoordinateDiff(std::vector(pads_begin.begin(), pads_begin.end())), ngraph::CoordinateDiff(std::vector(pads_end.begin(), pads_end.end())), ngraph::Strides(dilations), pad_type); } std::vector shape(conv_node.get_shape().size(), 1); shape[1] = conv_node.get_shape()[1]; if (biasvec.size() || nodes.size() == 3) { std::shared_ptr bias; if (nodes.size() == 3) { auto bias_shape = std::make_shared(ngraph::element::i64, ngraph::Shape{shape.size()}, std::vector(shape.begin(), shape.end())); bias = std::make_shared(nodes[2].dynamicCast()->node, bias_shape, true); } else { std::vector ovBias(numOutput); for (int i = 0; i < numOutput; ++i) { ovBias[i] = (biasvec[i] + input_zp * cv::sum(blobs[0].row(i))[0]) * outputMultiplier[i] * output_sc; } bias = std::make_shared(ngraph::element::f32, ngraph::Shape(shape), ovBias.data()); } conv_node = std::make_shared(conv_node, bias, ngraph::op::AutoBroadcastType::NUMPY); } conv_node = ngraphQuantize(conv_node, output_sc, output_zp); return new InfEngineNgraphNode(conv_node); } #endif // HAVE_DNN_NGRAPH class ParallelConv : public cv::ParallelLoopBody { public: enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 }; const Mat* input_; const Mat* weights_; Mat* output_; int outShape[4]; // used only for conv2d std::vector kernel_size, pads_begin, pads_end, strides, dilations; int ngroups_, nstripes_; std::vector ofstab_; const std::vector* biasvec_; const Mat* activLUT_; const ActivationLayerInt8* activ_; bool is1x1_; bool useAVX2; bool useAVX512; bool useLASX; int blk_size_cn; int inpZp, outZp; const std::vector* multiplier; ParallelConv() : input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0), biasvec_(0), activLUT_(0), activ_(0), is1x1_(false), useAVX2(false), useAVX512(false), useLASX(false) , blk_size_cn(0), inpZp(0), outZp(0), multiplier(0) {} static void run( const Mat& input, Mat& output, const Mat& weights, const std::vector& multipliers, const std::vector& biasvec, const Mat& activLUT, const std::vector& kernel_size, const std::vector& strides, const std::vector& pads_begin, const std::vector& pads_end, const std::vector& dilations, const ActivationLayerInt8* activ, int ngroups, int nstripes, int inp_Zp, int out_Zp) { size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); bool isConv1D = input.dims == 3; bool isConv2D = input.dims == 4; bool isConv3D = input.dims == 5; CV_CheckEQ(static_cast(kernel_size.size()), input.dims - 2, ""); CV_Assert_N(input.dims == output.dims, input.size[0] == output.size[0], weights.rows == output.size[1], weights.cols == (input.size[1]/ngroups)*karea, input.type() == CV_8SC1, output.type() == CV_32SC1, input.type() == weights.type(), input.isContinuous(), output.isContinuous(), biasvec.size() == (size_t)output.size[1]+2); CV_Check(weights.step1(), weights.step1() % VEC_ALIGN == 0, ""); ParallelConv p; p.input_ = &input; p.weights_ = &weights; p.output_ = &output; int max_ind = isConv1D? 3: 4; for( int i = 0; i < max_ind; i++ ) p.outShape[i] = output.size[i]; p.outShape[1] /= ngroups; p.kernel_size = kernel_size; p.strides = strides; p.dilations = dilations; p.pads_begin = pads_begin; p.pads_end = pads_end; p.ngroups_ = ngroups; p.nstripes_ = nstripes; int inpCnAll = input.size[1]; int depth = (input.dims == 5) ? input.size[2] : 1; int width = input.size[input.dims - 1]; int height = isConv1D? 1 : input.size[input.dims - 2]; int inpCn = inpCnAll / ngroups; p.is1x1_ = (isConv2D && kernel_size[0] == 1 && kernel_size[1] == 1 && pads_begin[0] == 0 && pads_begin[1] == 0) || (isConv1D && pads_begin[0] == 0 && kernel_size[0] == 1); p.useAVX2 = checkHardwareSupport(CPU_AVX2) && isConv2D; p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX && isConv2D; p.useLASX = checkHardwareSupport(CPU_LASX) && isConv2D; int kernel_d = isConv3D? kernel_size[0] : 1; int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2]; int kernel_w = kernel_size.back(); int blk_size_cn0 = cvCeil(1600./(kernel_w*kernel_h)); int ncn = 32; while (ncn*2 < blk_size_cn0 && ncn < inpCn) ncn *= 2; ncn = std::min(ncn, inpCn); p.blk_size_cn = ncn; int dil_d = isConv3D? dilations[0] : 1; int dil_h = isConv1D? 1 : dilations[dilations.size() - 2]; int dil_w = dilations.back(); p.inpZp = inp_Zp; p.outZp = out_Zp; p.multiplier = &multipliers; p.ofstab_.resize(karea * ncn); int* ofstab = &p.ofstab_[0]; if (isConv1D) { for( int k = 0; k < ncn; k++ ) for( int k_c = 0; k_c < kernel_w; k_c++ ) ofstab[k*kernel_w + k_c] = k*width + k_c*dil_w; } else if (isConv2D) { for( int k = 0; k < ncn; k++ ) for( int k_r = 0; k_r < kernel_h; k_r++ ) for( int k_c = 0; k_c < kernel_w; k_c++ ) ofstab[(k*kernel_h + k_r)*kernel_w + k_c] = (k*height + k_r*dil_h)*width + k_c*dil_w; } else { for( int k = 0; k < ncn; k++ ) for (int k_d = 0; k_d < kernel_d; k_d++) for( int k_r = 0; k_r < kernel_h; k_r++ ) for( int k_c = 0; k_c < kernel_w; k_c++ ) ofstab[(k*kernel_d*kernel_h + k_d*kernel_h + k_r)*kernel_w + k_c] = (k*depth*height + k_d*dil_d*height + k_r*dil_h)*width + k_c*dil_w; } p.biasvec_ = &biasvec; p.activLUT_ = &activLUT; p.activ_ = !activLUT.empty() ? activ : 0; parallel_for_(Range(0, nstripes), p, nstripes); } virtual void operator ()(const Range &r0) const CV_OVERRIDE { const int valign = ConvolutionLayerInt8Impl::VEC_ALIGN; int ngroups = ngroups_, batchSize = input_->size[0]*ngroups; bool isConv1D = input_->dims == 3; bool isConv2D = input_->dims == 4; bool isConv3D = input_->dims == 5; int outW = output_->size[output_->dims - 1]; int outH = isConv1D? 1 : output_->size[output_->dims - 2]; int outCn = output_->size[1]/ngroups; int depth = isConv3D? input_->size[2] : 1; int height = isConv1D? 1 : input_->size[input_->dims - 2]; int width = input_->size[input_->dims - 1]; int inpCn = input_->size[1]/ngroups; const int nstripes = nstripes_; int kernel_d = isConv3D? kernel_size[0] : 1; int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2]; int kernel_w = kernel_size.back(); int karea = kernel_w*kernel_h*kernel_d; int pad_d = isConv3D? pads_begin[0] : 0; int pad_t = isConv1D? 0 : pads_begin[pads_begin.size() - 2]; int pad_l = pads_begin.back(); int stride_d = isConv3D? strides[0] : 0; int stride_h = isConv1D? 0 : strides[strides.size() - 2]; int stride_w = strides.back(); int dilation_d = isConv3D? dilations[0] : 1; int dilation_h = isConv1D? 1 : dilations[dilations.size() - 2]; int dilation_w = dilations.back(); int i, j, k, d; int inpPlaneSize = (int)input_->total(2); int outPlaneSize = (int)output_->total(2); bool is1x1 = is1x1_; int stripesPerSample; int stripeSize; Range r = r0; bool depthWiseConvolution = !is1x1 && isConv2D && ngroups > 1 && inpCn == 1 && outCn == 1 && kernel_d == 1 && dilation_d == 1 && stride_d == 0 && pad_d == 0 && width >= 16 + dilation_w*(kernel_w - 1); // for now only 3x3 depth-wise convolutions are supported depthWiseConvolution = depthWiseConvolution && kernel_w == 3 && kernel_h == 3 && // computing at most 1 pixel from each side can involve padding max(stride_w, dilation_w) >= pad_l && max(stride_h, dilation_h) >= pad_t && pad_l <= 1 && pad_t <= 1; if( !depthWiseConvolution && nstripes >= batchSize*2 ) { stripesPerSample = nstripes/batchSize; stripeSize = (int)alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, 8); stripeSize = std::min(stripeSize, outPlaneSize); } else { stripesPerSample = 1; int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1); r.start *= samplesPerStripe; r.end *= samplesPerStripe; stripeSize = outPlaneSize; } const int8_t* data_inp0_ = input_->ptr(); const int* ofstab = &ofstab_[0]; const int8_t* wptr_orig_ = weights_->ptr(); size_t wstep = weights_->step1(); const int* biasptr_ = &biasvec_->at(0); const float* multptr_ = &multiplier->at(0); const int* lutptr_ = !activLUT_->empty() ? activLUT_->ptr() : 0; int* data_out0_ = output_->ptr(); AutoBuffer rowbuf0_; int8_t* rowbuf0 = 0; bool use_rowbuf = !depthWiseConvolution; int blk_size = depthWiseConvolution ? outPlaneSize : min((int)BLK_SIZE, stripeSize); // im2row buffer is not used for depth-wise convolution if(use_rowbuf) { size_t rowbufsz = alignSize(karea*blk_size_cn, valign)*min((int)BLK_SIZE, blk_size); //printf("karea=%d, blk_size_cn=%d, rowbufsz=%d, stripeSize=%d\n", karea, blk_size_cn, (int)rowbufsz, stripeSize); rowbuf0_.allocate(rowbufsz + valign); rowbuf0 = alignPtr(rowbuf0_.data(), (int)(valign*sizeof(int8_t))); // we clear the buffer once; ultimately, it lets us to avoid // tail processing after running the unrolled/vectorized loop. // the main idea is to make sure that the tail (a.k.a. padding) of each row // (i.e. the elements with indices between vsz=karea*ncn and vsz_a) // does not contain NaNs or Infs. Because the padding in the weights // matrix is explicitly initialized with 0's, we handle all other // cases nicely, i.e. we can skip expliciting re-initialization // of the padding - we just retain elements from the previous iteration // of the loop over channels (cn0). memset(rowbuf0, (int8_t)inpZp, rowbufsz*sizeof(rowbuf0[0]) ); } for( int stripe = r.start; stripe < r.end; stripe++ ) { int subsampleIdx = stripe/stripesPerSample; if( subsampleIdx >= batchSize ) break; int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize); int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize); const int8_t* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn; int* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn; int startOutCn = (subsampleIdx % ngroups)*outCn; const int8_t* wptr_orig = wptr_orig_ + wstep*startOutCn; const int* biasptr = biasptr_ + startOutCn; const float* multptr = multptr_ + startOutCn; for( int cn0 = 0; cn0 < inpCn; cn0 += blk_size_cn ) { int cn1 = std::min(cn0 + blk_size_cn, inpCn); int ncn = cn1 - cn0, vsz = karea*ncn; int vsz_a = (int)alignSize(vsz, valign); const int8_t* wptr = wptr_orig + cn0*karea; for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += blk_size ) { int ofs, ofs1 = std::min(ofs0 + blk_size, stripeEnd); int bsz = ofs1 - ofs0; int out_d = ofs0 / (outH * outW); int out_i = (ofs0 - out_d * outH * outW) / outW; int out_j = ofs0 % outW; if (depthWiseConvolution) { CV_Assert(out_i == 0 && out_j == 0); int in_d = out_d * stride_d - pad_d; const int8_t* inptr_ = data_inp0 + (cn0*depth*height + in_d*height)*width; int* outptr_ = data_out0 + ofs0; #if CV_TRY_AVX2 if(useAVX2) opt_AVX2::fastDepthwiseConv(wptr, kernel_h, kernel_w, stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l, biasptr, multptr, inptr_, height, width, outptr_, out_d, outH, outW, inpZp, outZp); else #endif #if CV_TRY_LASX if(useLASX) opt_LASX::fastDepthwiseConv(wptr, kernel_h, kernel_w, stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l, biasptr, multptr, inptr_, height, width, outptr_, out_d, outH, outW, inpZp, outZp); else #endif #if CV_RVP052 if(isConv2D) opt_RVP052::fastDepthwiseConv(wptr, kernel_h, kernel_w, stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l, biasptr, multptr, inptr_, height, width, outptr_, out_d, outH, outW, inpZp, outZp); else #endif { const int8_t w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2], w10 = wptr[3], w11 = wptr[4], w12 = wptr[5], w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8]; int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w); int bias = biasptr[out_d], biasCopy; float mult = multptr[out_d]; for (int out_i = 0; out_i < outH; out_i++) { int in_i = out_i * stride_h - pad_t, out_j = 0; const int8_t* imgptr0 = inptr_ + in_i*width; const int8_t* imgptr1 = imgptr0 + dilation_h*width; const int8_t* imgptr2 = imgptr0 + (dilation_h*2)*width; int8_t w00 = w00_, w01 = w01_, w02 = w02_; int8_t w20 = w20_, w21 = w21_, w22 = w22_; int out, out1; // Bias has a fused offset component. bias = bias_quantized - input_zeropoint*sum_of_weights. // In some cases below, certain weights are not used for convolution or set to zero. // So we create a copy of bias at the start and remove the weight's components as necessary. biasCopy = bias; if (in_i < 0) { biasCopy += inpZp * (w00 + w01 + w02); w00 = w01 = w02 = 0; imgptr0 = imgptr1; } else if (in_i + dilation_h*(kernel_h-1) >= height) { biasCopy += inpZp * (w20 + w21 + w22); w20 = w21 = w22 = 0; imgptr2 = imgptr1; } int* outptr = outptr_ + out_i*outW; if (pad_l > 0) { out = (int)imgptr0[0]*w01 + (int)imgptr0[dilation_w]*w02 + (int)imgptr1[0]*w11 + (int)imgptr1[dilation_w]*w12 + (int)imgptr2[0]*w21 + (int)imgptr2[dilation_w]*w22 + biasCopy + inpZp*(w00 + w10 + w20); out1 = outZp + (int)std::round(out*mult); outptr[0] = std::min(std::max(out1, -128), 127); out_j = 1; } #if CV_SIMD128 if( stride_w == 1 ) { const int out_delta = 16; v_int8x16 vw00 = v_setall_s8(w00), vw01 = v_setall_s8(w01), vw02 = v_setall_s8(w02), vw10 = v_setall_s8(w10), vw11 = v_setall_s8(w11), vw12 = v_setall_s8(w12), vw20 = v_setall_s8(w20), vw21 = v_setall_s8(w21), vw22 = v_setall_s8(w22); v_int32x4 vout0, vout1, vout2, vout3, vbias = v_setall_s32(biasCopy), voutzp = v_setall_s32(outZp), outmin = v_setall_s32(-128), outmax = v_setall_s32(127); v_float32x4 vmult = v_setall_f32(mult); for( ; out_j < outW1; out_j += out_delta ) { if (out_j + out_delta > outW1) { if (out_j <= pad_l) break; out_j = outW1 - out_delta; } int in_j = out_j * stride_w - pad_l; v_int8x16 v00 = v_load(imgptr0 + in_j), v01 = v_load(imgptr0 + in_j + dilation_w), v02 = v_load(imgptr0 + in_j + dilation_w*2), v10 = v_load(imgptr1 + in_j), v11 = v_load(imgptr1 + in_j + dilation_w), v12 = v_load(imgptr1 + in_j + dilation_w*2), v20 = v_load(imgptr2 + in_j), v21 = v_load(imgptr2 + in_j + dilation_w), v22 = v_load(imgptr2 + in_j + dilation_w*2); vout0 = vout1 = vout2 = vout3 = vbias; v_expand_mul_add(v00, vw00, vout0, vout1, vout2, vout3); v_expand_mul_add(v01, vw01, vout0, vout1, vout2, vout3); v_expand_mul_add(v02, vw02, vout0, vout1, vout2, vout3); v_expand_mul_add(v10, vw10, vout0, vout1, vout2, vout3); v_expand_mul_add(v11, vw11, vout0, vout1, vout2, vout3); v_expand_mul_add(v12, vw12, vout0, vout1, vout2, vout3); v_expand_mul_add(v20, vw20, vout0, vout1, vout2, vout3); v_expand_mul_add(v21, vw21, vout0, vout1, vout2, vout3); v_expand_mul_add(v22, vw22, vout0, vout1, vout2, vout3); vout0 = v_add(voutzp, v_round(v_mul(v_cvt_f32(vout0), vmult))); vout1 = v_add(voutzp, v_round(v_mul(v_cvt_f32(vout1), vmult))); vout2 = v_add(voutzp, v_round(v_mul(v_cvt_f32(vout2), vmult))); vout3 = v_add(voutzp, v_round(v_mul(v_cvt_f32(vout3), vmult))); vout0 = v_min(v_max(vout0, outmin), outmax); vout1 = v_min(v_max(vout1, outmin), outmax); vout2 = v_min(v_max(vout2, outmin), outmax); vout3 = v_min(v_max(vout3, outmin), outmax); v_store(outptr + out_j, vout0); v_store(outptr + out_j + 4, vout1); v_store(outptr + out_j + 8, vout2); v_store(outptr + out_j + 12, vout3); } } #endif for (; out_j < outW1; out_j++) { int in_j = out_j * stride_w - pad_l; out = (int)imgptr0[in_j]*w00 + (int)imgptr0[in_j + dilation_w]*w01 + (int)imgptr0[in_j + dilation_w*2]*w02 + (int)imgptr1[in_j]*w10 + (int)imgptr1[in_j + dilation_w]*w11 + (int)imgptr1[in_j + dilation_w*2]*w12 + (int)imgptr2[in_j]*w20 + (int)imgptr2[in_j + dilation_w]*w21 + (int)imgptr2[in_j + dilation_w*2]*w22 + biasCopy; out1 = outZp + (int)std::round(out*mult); outptr[out_j] = std::min(std::max(out1, -128), 127); } for (; out_j < outW; out_j++ ) { int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2; int s0 = 1, s1 = 1, s2 = 1; if (in_j0 >= width) { in_j0 = 0; s0 = 0; biasCopy += inpZp*(w00 + w10 + w20); } if (in_j1 >= width) { in_j1 = 0; s1 = 0; biasCopy += inpZp*(w01 + w11 + w21); } if (in_j2 >= width) { in_j2 = 0; s2 = 0; biasCopy += inpZp*(w02 + w12 + w22); } out = (int)imgptr0[in_j0]*w00*s0 + (int)imgptr0[in_j1]*w01*s1 + (int)imgptr0[in_j2]*w02*s2 + (int)imgptr1[in_j0]*w10*s0 + (int)imgptr1[in_j1]*w11*s1 + (int)imgptr1[in_j2]*w12*s2 + (int)imgptr2[in_j0]*w20*s0 + (int)imgptr2[in_j1]*w21*s1 + (int)imgptr2[in_j2]*w22*s2 + biasCopy; out1 = outZp + (int)std::round(out*mult); outptr[out_j] = std::min(std::max(out1, -128), 127); } } } continue; } // do im2row for a part of input tensor int8_t* rowbuf = rowbuf0; if (isConv1D) { for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_j = out_j * stride_w - pad_l; const int8_t* imgptr = data_inp0 + cn0*width + in_j; ofs += delta; // do im2row for a part of input tensor if( is1x1 ) { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w ) { for( k = 0; k < vsz; k++ ) rowbuf[k] = imgptr[k*inpPlaneSize]; } } else { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { // this condition should be true for most of the tensor elements, i.e. // most of the time the kernel aperture is inside the tensor X-Y plane. if( out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w ) { for( k = 0; k < vsz; k++ ) { int k1 = ofstab[k]; int8_t v0 = imgptr[k1]; int8_t v1 = imgptr[k1 + stride_w]; rowbuf[k] = v0; rowbuf[k+vsz_a] = v1; } out_j++; rowbuf += vsz_a; imgptr += stride_w; in_j += stride_w; } else { int i0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int i1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continuous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, (int8_t)inpZp, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for( i = i0; i < i1; i++ ) { int imgofs = k*width + i*dilation_w; rowbuf[k*kernel_w + i] = imgptr[imgofs]; } } } } } } } else if (isConv2D) { if( is1x1 && stride_w == 1 && stride_h == 1 ) { const int8_t* imgptr = data_inp0 + (cn0*height + out_i)*width + out_j; for( int j = 0; j < bsz; j++, rowbuf += vsz_a ) { if( j + 4 <= bsz ) { k = 0; for( ; k < vsz; k++ ) { const int8_t* inp = imgptr + j + k*inpPlaneSize; int8_t v0 = inp[0], v1 = inp[1], v2 = inp[2], v3 = inp[3]; rowbuf[k] = v0; rowbuf[k + vsz_a] = v1; rowbuf[k + vsz_a*2] = v2; rowbuf[k + vsz_a*3] = v3; } j += 3; rowbuf += vsz_a*3; } else { for( k = 0; k < vsz; k++ ) { rowbuf[k] = imgptr[j + k*inpPlaneSize]; } } } } else for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_i = out_i * stride_h - pad_t; int in_j = out_j * stride_w - pad_l; const int8_t* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j; ofs += delta; // do im2row for a part of input tensor if( is1x1 ) { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w ) { for( k = 0; k < vsz; k++ ) rowbuf[k] = imgptr[k*inpPlaneSize]; } } else { bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h; int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h); int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h); for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { // this condition should be true for most of the tensor elements, i.e. // most of the time the kernel aperture is inside the tensor X-Y plane. if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w ) { for( k = 0; k < vsz; k++ ) { int k1 = ofstab[k]; int8_t v0 = imgptr[k1]; int8_t v1 = imgptr[k1 + stride_w]; rowbuf[k] = v0; rowbuf[k+vsz_a] = v1; } out_j++; rowbuf += vsz_a; imgptr += stride_w; in_j += stride_w; } else { int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continuous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, (int8_t)inpZp, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for( i = i0; i < i1; i++ ) { for( j = j0; j < j1; j++ ) { int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w; rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs]; } } } } } } } } else { for( ofs = ofs0; ofs < ofs1; out_d += (out_i + 1) / outH, out_i = (out_i + 1) % outH, out_j = 0 ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_d = out_d * stride_d - pad_d; int in_i = out_i * stride_h - pad_t; int in_j = out_j * stride_w - pad_l; const int8_t* imgptr = data_inp0 + (cn0*depth*height + in_d*height + in_i)*width + in_j; ofs += delta; int d0 = std::max(0, (-in_d + dilation_d - 1) / dilation_d); int d1 = std::min(kernel_d, (depth - in_d + dilation_d - 1) / dilation_d); int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h); int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h); for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continuous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, (int8_t)inpZp, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for ( d = d0; d < d1; d++) { for( i = i0; i < i1; i++ ) { for( j = j0; j < j1; j++ ) { int imgofs = k*(depth*width*height) + d*dilation_d*width*height + i*(dilation_h*width) + j*dilation_w; rowbuf[(k*kernel_d*kernel_h + d*kernel_h + i)*kernel_w + j] = imgptr[imgofs]; } } } } } } } // now compute dot product of the weights // and im2row-transformed part of the tensor #if CV_TRY_AVX512_SKX if(useAVX512) opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, outZp, multptr, cn0 == 0, cn1 == inpCn); else #endif #if CV_TRY_AVX2 if(useAVX2) opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, outZp, multptr, cn0 == 0, cn1 == inpCn); else #endif #if CV_TRY_LASX if(useLASX) opt_LASX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, outZp, multptr, cn0 == 0, cn1 == inpCn); else #endif #if CV_RVP052 if(isConv2D) opt_RVP052::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, outZp, multptr, cn0 == 0, cn1 == inpCn); else #endif for( int i = 0; i < outCn; i += 2 ) { const int8_t* wptr0 = wptr + i*wstep; const int8_t* wptr1 = wptr0 + wstep; int* outptr0 = data_out0 + ofs0 + i*outPlaneSize; int* outptr1 = outptr0 + outPlaneSize; int bias0 = biasptr[i], bias1 = biasptr[i+1]; float mult0 = multptr[i], mult1 = multptr[i+1]; if( i+1 >= outCn ) { wptr1 = wptr0; outptr1 = outptr0; bias1 = bias0; mult1 = mult0; } int j = 0; #if CV_SIMD128 v_int32x4 voutzp = v_setall_s32(outZp), outmin = v_setall_s32(-128), outmax = v_setall_s32(127); v_float32x4 vmult0 = v_setall_f32(mult0), vmult1 = v_setall_f32(mult1); for( ; j <= bsz - 4; j += 4 ) { const int8_t* rptr = rowbuf0 + j*vsz_a; v_int32x4 s0, s1; if( cn0 == 0 ) { s0 = v_setall_s32(bias0); s1 = v_setall_s32(bias1); } else { s0 = v_load(outptr0 + j); s1 = v_load(outptr1 + j); } v_int32x4 vs00 = v_setzero_s32(), vs01 = v_setzero_s32(), vs02 = v_setzero_s32(), vs03 = v_setzero_s32(), vs10 = v_setzero_s32(), vs11 = v_setzero_s32(), vs12 = v_setzero_s32(), vs13 = v_setzero_s32(); for( k = 0; k < vsz; k += 16, rptr += 16 ) { v_int8x16 w0 = v_load_aligned(wptr0 + k); v_int8x16 w1 = v_load_aligned(wptr1 + k); v_int8x16 r0 = v_load_aligned(rptr); v_int8x16 r1 = v_load_aligned(rptr + vsz_a); v_int8x16 r2 = v_load_aligned(rptr + vsz_a*2); v_int8x16 r3 = v_load_aligned(rptr + vsz_a*3); vs00 = v_dotprod_expand_fast(w0, r0, vs00); vs01 = v_dotprod_expand_fast(w0, r1, vs01); vs02 = v_dotprod_expand_fast(w0, r2, vs02); vs03 = v_dotprod_expand_fast(w0, r3, vs03); vs10 = v_dotprod_expand_fast(w1, r0, vs10); vs11 = v_dotprod_expand_fast(w1, r1, vs11); vs12 = v_dotprod_expand_fast(w1, r2, vs12); vs13 = v_dotprod_expand_fast(w1, r3, vs13); } s0 = v_add(s0, v_int32x4(v_reduce_sum(vs00), v_reduce_sum(vs01), v_reduce_sum(vs02), v_reduce_sum(vs03))); s1 = v_add(s1, v_int32x4(v_reduce_sum(vs10), v_reduce_sum(vs11), v_reduce_sum(vs12), v_reduce_sum(vs13))); if( cn1 == inpCn ) { s0 = v_add(voutzp, v_round(v_mul(v_cvt_f32(s0), vmult0))); s1 = v_add(voutzp, v_round(v_mul(v_cvt_f32(s1), vmult1))); s0 = v_min(v_max(s0, outmin), outmax); s1 = v_min(v_max(s1, outmin), outmax); } v_store(outptr0 + j, s0); v_store(outptr1 + j, s1); } #endif for( ; j < bsz; j++ ) { const int8_t* rptr = rowbuf0 + j*vsz_a; int s00, s10; if( cn0 == 0 ) { s00 = bias0; s10 = bias1; } else { s00 = outptr0[j]; s10 = outptr1[j]; } for( k = 0; k < vsz; k++ ) { int8_t r0 = rptr[k]; s00 += (int)wptr0[k] * r0; s10 += (int)wptr1[k] * r0; } if( cn1 == inpCn ) { int out0 = outZp + (int)std::round(s00*mult0); int out1 = outZp + (int)std::round(s10*mult1); s00 = std::min(std::max(out0, -128), 127); s10 = std::min(std::max(out1, -128), 127); } outptr0[j] = s00; outptr1[j] = s10; } } } } if( activ_ ) activ_->forwardSlice(data_out0 + stripeStart, lutptr_, data_out0 + stripeStart, (int)(stripeEnd - stripeStart), outPlaneSize, startOutCn, startOutCn + outCn); } } }; void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); #if CV_SSE3 uint32_t ftzMode = _MM_GET_FLUSH_ZERO_MODE(); uint32_t dazMode = _MM_GET_DENORMALS_ZERO_MODE(); _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); #endif std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); /*if (inputs[0].dims > 3) { printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n", name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3], kernel.width, kernel.height, pad.width, pad.height, stride.width, stride.height, dilation.width, dilation.height); } else { printf("conv %s: input (%d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n", name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], kernel.width, kernel.height, pad.width, pad.height, stride.width, stride.height, dilation.width, dilation.height); }*/ int inpGroupCn = blobs[0].size[1]; CV_Assert_N(inputs.size() == (size_t)1, inputs[0].size[1] % inpGroupCn == 0, outputs.size() == 1, inputs[0].data != outputs[0].data); int ngroups = inputs[0].size[1] / inpGroupCn; CV_Assert(outputs[0].size[1] % ngroups == 0); int nstripes = std::max(getNumThreads(), 1); Mat outputInt32 = Mat(shape(outputs[0]), CV_32S); ParallelConv::run(inputs[0], outputInt32, weightsMat, outputMultiplier, biasvec, activationLUT, kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes, input_zp, output_zp); outputInt32.convertTo(outputs[0], CV_8S); #if CV_SSE3 _MM_SET_FLUSH_ZERO_MODE(ftzMode); _MM_SET_DENORMALS_ZERO_MODE(dazMode); #endif } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const CV_OVERRIDE { CV_Assert(inputs.size() == outputs.size()); int64 flops = 0; int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); for (int i = 0; i < outputs.size(); i++) { flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1); } return flops; } }; Ptr ConvolutionLayerInt8::create(const LayerParams ¶ms) { return Ptr(new ConvolutionLayerInt8Impl(params)); } } }